Advertisement

Quantitative and Qualitative Evaluation of ROS-Enabled Local and Global Planners in 2D Static Environments

  • Alexandros FilotheouEmail author
  • Emmanouil Tsardoulias
  • Antonis Dimitriou
  • Andreas Symeonidis
  • Loukas Petrou
Article

Abstract

Apart from perception, one of the most fundamental aspects of an autonomous mobile robot is the ability to adequately and safely traverse the environment it operates in. This ability is called Navigation and is performed in a two- or three-dimensional fashion, except for cases where the robot is neither a ground vehicle nor articulated (e.g. robotics arms). The planning part of navigation comprises a global planner, suitable for generating a path from an initial to a target pose, and a local planner tasked with traversing the aforementioned path while dealing with environmental, sensorial and motion uncertainties. However, the task of selecting the optimal global and/or local planner combination is quite hard since no research provides insight on which is best regarding the domain and planner limitations. In this context, current work performs a comparative analysis on qualitative and quantitative aspects of the most common ROS-enabled global and local planners for robots operating in two-dimensional static environments, on the basis of mission-centered and planner-related metrics, optimality and traversability aspects, as well as non-measurable aspects, such as documentation quality, parameterisability, ease of use, etc.

Keywords

Path planning Path traversing Local planners Global planners Unmanned Ground Vehicles ROS RFID localization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH CREATE INNOVATE (project code:T1EDK-03032).

The authors would like to thank the reviewers of this paper for their helpful comments and suggestions.

References

  1. 1.
    Raghu, D.: RFID 2018–2020: RAIN and NFC Market Status, Outlook and Innovations, IDTEchEx, Presentation, link: https://rainrfid.org/wp-content/uploads/2018/03/IDTechEx-RFID-March-_Distribute.pdf https://rainrfid.org/wp-content/uploads/2018/03/IDTechEx-RFID-March-_Distribute.pdf, accessed 11/02/2019
  2. 2.
    Travis, D., Matthew, S., Reynolds, C., Kemp, C.: Finding and navigating to household objects with UHF RFID tags by optimizing RF signal strength, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, USA.  https://doi.org/10.1109/IROS.2014.6942914 (2014)
  3. 3.
    Emilio, D., Francesco, M.: Mobile Robot Localization Using the Phase of Passive UHF RFID Signals. IEEE Trans. Ind. Electron. 61(1), 365–376 (2014).  https://doi.org/10.1109/TIE.2013.2248333 CrossRefGoogle Scholar
  4. 4.
    Tory-robot, Metralabs, link: https://www.metralabs.com/en/rfid-robot-tory/, accessed 11/02/2019
  5. 5.
    AdvanRobot, Keonn Technologies, link: https://www.keonn.com/systems/view-all-2/inventory-robots.html, accessed 11/02/2019
  6. 6.
  7. 7.
    Tzitzis, A., Megalou, S., Siachalou, S., Yioultsis, T., Kehagias, A., Tsardoulias, E., Filotheou, A., Symeonidis, A., Petrou, L., Dimitriou, A.G.: Phase ReLock - Localization of RFID Tags by a Moving Robot, to Appear in the European Conference on Antennas and Propagation, Krakow, Poland (2019)Google Scholar
  8. 8.
    Megalou, S., Tzitzis, A., Siachalou, S., Yioultsis, T., Sahalos, J., Tsardoulias, E., Filotheou, A., Symeonidis, A., Petrou, L., Bletsas, A., Dimitriou, A.G.: Fingerprinting Localization of RFID Tags with Real-Time Performance-Assessment, Using a Moving Robot, to Appear in the European Conference on Antennas and Propagation, Krakow, Poland (2019)Google Scholar
  9. 9.
    Gandhi, D., Pinto, L., Gupta, A.: Learning to fly by crashing, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, pp. 3948–3955.  https://doi.org/10.1109/IROS.2017.8206247(2017)
  10. 10.
    Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: An open-source Robot Operating System. ICRA Work. Open Sourc. Softw. 3(3.2), 5 (2009)Google Scholar
  11. 11.
    Lozano-Prez, T., Wesley, M.A.: An algorithm for planning collision-free paths among polyhedral obstacles. Commun. ACM 22(10), 560–570 (1979)CrossRefGoogle Scholar
  12. 12.
    Ghosh, S.K.: Visibility algorithms in the plane, Cambridge University Press. ISBN:9780521875745 (2007)Google Scholar
  13. 13.
    Ghosh, S.K., Goswami, P.P.: Unsolved problems in visibility graphs of points, segments and polygons. In: Proceedings of India-Taiwan Conference on Discrete Mathematics, Taipei, pp. 44–54 (2009)Google Scholar
  14. 14.
    Kim, J., Kim, M., Kim, D.: Variants of the quantized visibility graph for efficient path planning. Adv. Robot. 25(18), 2341–2360 (2011)CrossRefGoogle Scholar
  15. 15.
    Bhattacharya, P., Gavrilova, M.L.: Voronoi diagram in optimal path planning. In: 4th International Symposium on Voronoi Diagrams in Science and Engineering, ISVD’07, pp. 38–47 (2007)Google Scholar
  16. 16.
    Garrido, S., Moreno, L., Abderrahim, M., Martin, F.: Path Planning for Mobile Robot Navigation Using Voronoi Diagram and Fast Marching. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2376–2381 (2006)Google Scholar
  17. 17.
    Ok, K.-C., Ansari, S., Gallagher, B., Sica, W., Dellaert, F., Stilman, M.: Path Planning with Uncertainty: Voronoi Uncertainty Fields. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 4596–4601. IEEE (2013)Google Scholar
  18. 18.
    Kavraki, L.E., Svestka, P., Latombe, J.-C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)CrossRefGoogle Scholar
  19. 19.
    Laumond, J.-P., Nissoux, C.: Visibility-based probabilistic roadmaps for motion planning. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS’99, vol. 3, pp. 1316–1321 (1999)Google Scholar
  20. 20.
    Bohlin, R., Kavraki, L.E.: Path planning using lazy PRM. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA’00, vol. 1, pp. 521–528 (2000)Google Scholar
  21. 21.
    Hsu, D., Sanchez-Ante, G., Sun, Z.: Hybrid PRM Sampling with a Cost-Sensitive Adaptive Strategy. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation 2005, ICRA 2005, pp. 3874–3880Google Scholar
  22. 22.
    LaValle, S.M.: Rapidly-Exploring Random Trees: A New Tool for Path Planning. TR 98–11, Computer Science Department, Iowa State University (1998)Google Scholar
  23. 23.
    Bruce, J., Veloso, M.: Real-Time Randomized Path Planning for Robot Navigation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 2383–2388 (2002)Google Scholar
  24. 24.
    Martin, S.R., Wright, S.E., Sheppard, J.W.: Offline and online evolutionary Bi-Directional RRT algorithms for efficient Re-Planning in dynamic environments (2007)Google Scholar
  25. 25.
    Karaman, S., Frazzoli, E.: Incremental Sampling-based Algorithms for Optimal Motion Planning coRR (2010)Google Scholar
  26. 26.
    Guitton, J., Farges, J.-L., Chatila, R.: Cell-RRT: Decomposing the environment for better plan. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, pp. 5776–5781 (2009)Google Scholar
  27. 27.
    Jaillet, L., Corts, J., Simon, T.: Sampling-based path planning on configuration-space costmaps. IEEE Trans. Robot. 26(4), 635–646 (2010)CrossRefGoogle Scholar
  28. 28.
    Pivtoraiko, M., Kelly, A.: Efficient constrained path planning via search in state lattices, The 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2005, keywords: constrained path planning, planetary rover, rough terrainGoogle Scholar
  29. 29.
    Latombe, J.-C.: Robot Motion Planning (1991)Google Scholar
  30. 30.
    Koren, Y., Borenstein, J.: Potential field methods and their inherent limitations for mobile robot navigation. In: Proceedings. 1991 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1398–1404, Sacramento, CA.  https://doi.org/10.1109/ROBOT.1991.131810 (1991)
  31. 31.
    Ge, S.S., Cui, Y.J.: New potential functions for mobile robot path planning. IEEE Trans. Robot. Autom. 16(5), 615–620 (2000).  https://doi.org/10.1109/70.880813 CrossRefGoogle Scholar
  32. 32.
    Kowalczyk, W.: Rapid Navigation Function Control for Two-Wheeled Mobile Robots, Journal of Intelligent & Robotic Systems.  https://doi.org/10.1007/s10846-018-0879-4 (2018)CrossRefGoogle Scholar
  33. 33.
    Park, J.J., Grizzle, J.W: Graceful Navigation for Mobile Robots in Dynamic and Uncertain Environments (2016)Google Scholar
  34. 34.
    Borenstein, J., Koren, Y.: The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Trans. Robot. Autom. 7(3), 278–288 (1991)CrossRefGoogle Scholar
  35. 35.
    Ulrich, I., Borenstein, J.: VFH+: Reliable obstacle avoidance for fast mobile robots. In: 1998. Proceedings. 1998 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1572–1577. IEEE (1998)Google Scholar
  36. 36.
    Ulrich, I., Borenstein, J.: VFH*̂: Local Obstacle avoidance with look-ahead verification. In: ICRA, pp. 2505–2511 (2000)Google Scholar
  37. 37.
    Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 4(1), 23–33 (1997)CrossRefGoogle Scholar
  38. 38.
    Tovar, B., Guilamo, L., LaValle, S.M.: Gap navigation trees: Minimal representation for visibility-based tasks. In: Algorithmic Foundations of Robotics VI, pp. 425–440. Springer, Berlin (2004)Google Scholar
  39. 39.
    Minguez, J., Montano, L.: Nearness diagram navigation (nd): A new real time collision avoidance approach. In: 2000.(IROS 2000). Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 2094–2100. IEEE (2000)Google Scholar
  40. 40.
    Minguez, J., Osuna, J., Montano, L.: A divide and conquer” strategy based on situations to achieve reactive collision avoidance in troublesome scenarios. In: 2004. Proceedings. ICRA’04. 2004 IEEE International Conference on Robotics and Automation, vol. 4, pp. 3855–3862. IEEE (2004)Google Scholar
  41. 41.
    Quinlan, S., Khatib, O.: Elastic bands: Connecting path planning and control. In: 1993. Proceedings., 1993 IEEE International Conference on Robotics and Automation, pp. 802–807. IEEE (1993)Google Scholar
  42. 42.
    Kurniawati, H., Fraichard, T.: From path to trajectory deformation,” 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 159–164, San Diego, CA.  https://doi.org/10.1109/IROS.2007.4399235 (2007)
  43. 43.
    Rösmann, C., Feiten, W., Wösch, T., Hoffmann, F., Bertram, T.: Trajectory modification considering dynamic constraints of autonomous robots. In: 7th German Conference on Robotics; Proceedings of ROBOTIK 2012, pp. 1–6. VDE (2012)Google Scholar
  44. 44.
    Rösmann, C., Hoffmann, F., Bertram, T.: Kinodynamic trajectory optimization and control for car-like robots. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5681–5686, Vancouver, BC.  https://doi.org/10.1109/IROS.2017.8206458 (2017)
  45. 45.
    Fox, D.: KLD-Sampling: Adaptive Particle Filters and Mobile Robot Localization. In: Advances in Neural Information Processing Systems (NIPS) (2001)Google Scholar
  46. 46.
    Philippsen, R.: Motion planning and obstacle avoidance for mobile robots in highly cluttered dynamic environments, EPFL, http://infoscience.epfl.ch/record/33615,  https://doi.org/10.5075/epfl-thesis-3146(2004)
  47. 47.
    Chitta, S., Sucan, I., Cousins, S.: Moveit![ROS topics]. IEEE Robot. Autom. Mag. 19(1), 18–19 (2012)CrossRefGoogle Scholar
  48. 48.
    Likhachev, M., Gordon, G., Thrun, S.: ARA*: Anytime A*with Provable Bounds On Sub-Optimality. Proc. Adv. Neural Inf. Process. Syst. 16(NIPS), 258–265 (2003)Google Scholar
  49. 49.
    Likhachev, M., Ferguson, D.I., Gordon, G.J., Stentz, A., Thrun, S.: Anytime dynamic a*: an anytime, replanning algorithm. In: ICAPS, pp. 262–271 (2005)Google Scholar
  50. 50.
    Phillips, M., Likhachev, M.: SIPP: Safe interval path planning for dynamic environments. 2011 IEEE International Conference on Robotics and Automation, pp. 5628–5635 (2011)Google Scholar
  51. 51.
    Phillips, M., Likhachev, M.: Sipp: Safe interval path planning for dynamic environments. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 5628–5635. IEEE (2011)Google Scholar
  52. 52.
    Fréchet, M. M.: Sur quelques points du calcul fonctionnel. Rend. Circ. Mat. Palermo (1884-1940) 22(1), 1–72 (1906). issn: 0009-725X.  https://doi.org/10.1007/BF03018603 CrossRefGoogle Scholar
  53. 53.
    Tyrrell Rockafellar, R., Wets, R.J.-B.: Variational Analysis. Springer, Berlin. 978-3-540-62772-2 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Electrical and Computer EngineeringAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations