Review and Analysis of Search, Extraction, Evacuation, and Medical Field Treatment Robots

Abstract

One of the most impactful and exciting applications of robotic technology, especially autonomous and semi-autonomous systems, is in the field of search and rescue. Robots present an opportunity to go where rescuers cannot, keep responders out of danger, work indefatigably, and augment the capabilities of the humans who put their lives at risk while helping others. This paper examines the use of robotic systems in human rescue applications, with an emphasis on performing search, extraction, evacuation, and medical field treatment procedures. The work begins with a review of the various robotic systems designed to perform one or more of the above operations. The relative merits of each system are discussed along with their shortcomings. The paper also addresses the use of robotic competitions as a means of benchmarking field robotic systems. Based on the review of state of the art systems, a novel concept (Semi- Autonomous Victim Extraction Robot) designed to address the shortcomings of existing systems is described in the conclusion, along with detailed discussion on how it improves upon state of the art systems. The future research thrusts to be explored before realizing a fully integrated robotic rescue system are also detailed.

References

  1. 1.

    Dickey, N.W.: Combat trauma lessons learned from military operations of 2001-2013. Defense Health Board (2015)

  2. 2.

    International Federation of Red Cross and Red Crescent Societies (IFRC), World disasters report 2009: Focus on Early Warning, Early Action. Geneva

  3. 3.

    Dinh, M.M., Bein, K., Roncal, S., Byrne, C.M., Petchell, J., Brennan, J.: Redefining the golden hour for severe head injury in an urban setting: The effect of prehospital arrival times on patient outcomes. Injury 44(5), 606–610 (2013)

    Google Scholar 

  4. 4.

    Harmsen, A.M.K., Giannakopoulos, G.F., Moerbeek, P.R., Jansma, E.P., Bonjer, H.J., Bloemers, F.W.: The influence of prehospital time on trauma patients outcome: A systematic review. Injury 46(4), 602–609 (2015)

    Google Scholar 

  5. 5.

    Lerner, E.B., Moscati, R.M.: The golden hour: Scientific fact or medical ‘urban legend’? Acad. Emerg. Med. 8(7), 758–760 (2001)

    Google Scholar 

  6. 6.

    Newgard, C.D., Schmicker, R.H., Hedges, J.R., Trickett, J.P., Davis, D.P., Bulger, E.M., Aufderheide, T.P., Minei, J.P., Hata, J.S., Gubler, K.D., Brown, T.B., Yelle, J.D., Bardarson, B., Nichol, G.: Emergency medical services intervals and survival in trauma: Assessment of the ‘golden hour’ in a North American prospective cohort. Ann. Emerg. Med. 55(3), 235–246 (2010)

    Google Scholar 

  7. 7.

    Kotwal, R.S., Howard, J.T., Orman, J.A., Tarpey, B.W., Bailey, J.A., Champion, H.R., Mabry, R.L., Holcomb, J.B., Gross, K.R.: The effect of a golden hour policy on the morbidity and mortality of combat casualties. JAMA Surg. 151(1), 15–24 (2016)

    Google Scholar 

  8. 8.

    Eastridge, B.J., Hardin, M., Cantrell, J., Oetjen-Gerdes, L., Zubko, T., Mallak, C., Wade, C.E., Simmons, J., Mace, J., Mabry, R., Bolenbaucher, R., Blackbourne, L.H.: Died of wounds on the battlefield: Causation and implications for improving combat casualty care. J. Trauma Inj. Infect. Crit. Care 71, S4–S8 (2011)

    Google Scholar 

  9. 9.

    U.S. Army Medical Research and Material Command: Unmanned Systems Teaming for Semi-Autonomous Casualty Extraction, SBIR-STTR (2017) [Online]. Available: https://www.sbir.gov/sbirsearch/detail/1319095 https://www.sbir.gov/sbirsearch/detail/1319095. [Accessed: 11 Feb 2017]

  10. 10.

    Chapman, P.L., Cabrera, L.D., Varela-Mayer, C., Baker, M.M., Elnitsky, C., Figley, C., Thurman, R.M., Lin, C.-D., Mayer, L.P.: Training, deployment preparation, and combat experiences of deployed health care personnel: Key findings from deployed U.S. Army combat medics assigned to line units. Mil. Med. 177(3), 270–277 (2012)

    Google Scholar 

  11. 11.

    Department of Homeland Security: First Responder Guide for Improving Survivability in Improvised Explosive Device and/or Active Shooter Incidents (2015) [Online]. Available: https://www.dhs.gov/sites/default/files/publications/First Responder Guidance June 2015 FINAL 2.pdf. [Accessed: 01 Dec 2018]

  12. 12.

    Beebe, K.M., Gilbert, G.R.: Robotics and unmanned systems – ‘game changers’ for combat medical missions, NATO RTO-HFM 182 Symp. Adv. Technol. New Proced. Med. F Oper. (2010)

  13. 13.

    Snyder, R.G.: Robots assist in search and rescue efforts at WTC. IEEE Robot. Autom. Mag. 8, 26–28 (2001)

    Google Scholar 

  14. 14.

    Atwood, T., Klein, J.: VECNA’s battlefild extraction-assist robot BEAR, Robot Magazine [Online]. Available: https://web.archive.org/web/20101120084734/, http://www.botmag.com/articles/04-25-07vecnabear.shtml. [Accessed: 01 Dec 2018] (2007)

  15. 15.

    Watts, R., Rowe, P., Gilbert, G: TATRC and TARDEC collaborative robots program (2004)

  16. 16.

    Gilbert, G., Turner, T., Marchessault, R: Army medical robotics research (2007)

  17. 17.

    Freschi, C., Ferrari, V., Melfi, F., Ferrari, M., Mosca, F., Cuschieri, A.: Technical review of the da Vinci surgical telemanipulator. Int J Med Robot Comput Assisted Surgery 9(4), 396–406 (2013)

    Google Scholar 

  18. 18.

    Marescaux, J., Rubino, F.: The ZEUS robotic system: Experimental and clinical applications. Surg Clinics North Amer 83(6), 1305–1315 (2003)

    Google Scholar 

  19. 19.

    Davids, A.: Urban search and rescue robots: From tragedy to technology. IEEE Intell. Syst. 17(2), 81–83 (2002)

    Google Scholar 

  20. 20.

    Murphy, R.R.: A decade of rescue robots. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5448–5449 (2012)

  21. 21.

    Nagatani, K., Kiribayashi, S., Okada, Y., Otake, K., Yoshida, K., Tadokoro, S., Nishimura, T., Yoshida, T., Koyanagi, E., Fukushima, M., Kawatsuma, S.: Emergency response to the nuclear accident at the Fukushima Daiichi nuclear power plants using mobile rescue robots. J. F. Robot. 30(1), 44–63 (2013)

    Google Scholar 

  22. 22.

    Murphy, R.R., Tadokoro, S., Nardi, D., Jacoff, A., Fiorini, P., Choset, H., Erkmen, A.M.: Search and rescue robotics. In: Springer Handbook of Robotics, pp. 1151–1173. Springer (2008)

  23. 23.

    Nagatani, K., Kiribayashi, S., Okada, Y., Tadokoro, S., Nishimura, T., Hada, Y., Yoshida, T., Koyanagi, E.: Redesign of rescue mobile robot Quince. In: IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 13–18 (2011)

  24. 24.

    Murphy, R., Casper, J., Hyams, J., Micire, M., Minten, B: Mobility and sensing demands in USAR. In: IECON Proceedings (Industrial Electronics Conference), vol. 1, pp. 138–142 (2000)

  25. 25.

    Casper, J., Murphy, R.R.: Human-robot interactions during the robot-assisted urban search and rescue response at the World Trade Center. IEEE Trans. Syst. Man, Cybern. Part B Cybern. 33(3), 367–385 (2003)

    Google Scholar 

  26. 26.

    Murphy, R.R.: Disaster Robotics. MIT Press (2014)

  27. 27.

    Micire, M.J.: Evolution and field performance of a rescue robot. J. F. Robot. 25(1–2), 17–30 (2008)

    Google Scholar 

  28. 28.

    Burion, S.: Human detection for robotic urban search and rescue. Institut De Production Robotique (IPR) Diploma Work (2004)

  29. 29.

    Murphy, R.R., Kravitz, J., Stover, S.L., Shoureshi, R.: Mobile robots in mine rescue and recovery. IEEE Robot. Autom. Mag. 16(2), 91–103 (2009)

    Google Scholar 

  30. 30.

    Murphy, R.R.: Trial by fire. IEEE Robot. Autom. Mag. 11(3), 50–61 (2004)

    MathSciNet  Google Scholar 

  31. 31.

    Guizzo, E.: Rescue-robot show-down. IEEE Spectr. 51(1), 52–55 (2014)

    Google Scholar 

  32. 32.

    Bruggemann, B., Wildermuth, D., Schneider, F.E.: Field and Service Robotics, vol. 62. Springer Tracts in Advanced Robotics (2010)

  33. 33.

    Yamauchi, B.M.: PackBot: A versatile platform for military robotics. In: Unmanned Ground Vehicle Technology VI, vol. 5422, pp. 228–237 (2004)

  34. 34.

    Shah, B., Choset, H.: Survey on urban search and rescue robots. J. Robot. Soc. Japan 22(5), 582–586 (2004)

    Google Scholar 

  35. 35.

    Tadokoro, S.: Special project on development of advanced robots for disaster response (DDT Project). In: 2005 IEEE Workshop on Advanced Robotics and its Social Impacts, vol. 24, pp. 66–72 (2005)

  36. 36.

    Tadokoro, S.: DDT project on rescue robots and systems. In: 2006 SICE-ICASE International Joint Conference, pp. 3429–3434 (2006)

  37. 37.

    Takayama, T., Hirose, S.: Development of Souryu-I connected crawler vehicle for inspection of narrow and winding space. In: IECON Proceedings (Industrial Electronics Conference), vol. 1, pp. 143–148 (2000)

  38. 38.

    Matsuno, F, Tadokoro, S.: Rescue robots and systems in Japan. In: 2004 IEEE International Conference on Robotics and Biomimetics, pp. 12–20 (2004)

  39. 39.

    Martens, J.D., Newman, W.S.: Stabilization of a mobile robot climbing stairs. In: 1994 IEEE International Conference on Robotics and Automation, pp. 2501–2507 (1994)

  40. 40.

    Buckstone, K., Judd, L., Orlowski, N., Tayler-Grint, M., Williams, R., Zauls, E.: Warwick mobile robotics? Urban Search and Rescue Robot (2013)

  41. 41.

    Wells, P., Deguire, D.: TALON: A universal unmanned ground vehicle platform, enabling the mission to be the focus. In: Unmanned Ground Vehicle Technology VII, vol. 5804 (2005)

  42. 42.

    Human-Robot Informatics Laboratory: Disaster Response Robot Quince (2012) [Online]. Available: http://www.rm.is.tohoku.ac.jp/quinceeng/. [Accessed: 01 Dec 2018]

  43. 43.

    Kruijff, G.J.M., Pirri, F., Gianni, M., Papadakis, P., Pizzoli, M., Sinha, A., Tretyakov, V., Linder, T., Pianese, E., Corrao, S., Priori, F., Febrini, S., Angeletti, S.: Rescue robots at earthquake-hit Mirandola, Italy: A field report. In: 2012 IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2012, pp. 1–8 (2012)

  44. 44.

    Larochelle, B., Kruijff, G.-J. M., Smets, N., Mioch, T., Groenewegen, P.: Establishing human situation awareness using a multi-modal operator control unit in an urban search and rescue human-robot team. In: IEEE International Workshop on Robot and Human Interactive Communication (2011), pp. 229–234 (2011)

  45. 45.

    Kruijff-Korbayova, I., Freda, L., Gianni, M., Ntouskos, V., Hlavac, V., Kubelka, V., Zimmermann, E., Surmann, H., Dulic, K., Rottner, W., Gissi, E.: Deployment of ground and aerial robots in earthquake-struck Amatrice in Italy (brief report). In: 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 278–279 (2016)

  46. 46.

    De Cubber, G.: Project Public Report-ICARUS (2012)

  47. 47.

    De Cubber, G., Doroftei, D., Serrano, D., Chintamani, K., Sabino, R., Ourevitch, S.: The EU-ICARUS project: Developing assistive robotic tools for search and rescue operations. In: 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics SSRR 2013 (2013)

  48. 48.

    De Cubber, G., Doroftei, D., Rudin, K., Berns, K., Matos, A., Serrano, D., Sanchez, J.M., Govindaraj, S., Bedkowski, J., Roda, R., Silva, E., Ourevitch, S., Wagemans, R., Lobo, V., Cardoso, G., Chintamani, K., Gancet, J., Stupler, P., Nezhadfard, A., Tosa, M., Balta, H., Almeida, J., Martins, A., Ferreira, H., Ferreira, B., Alves, J., Dias, A., Fioravanti, S., Bertin, D., Moreno, G., Cordero, J., Marques, M.M., Grati, A., Chaudhary, H.M., Sheers, B., Riobo, Y., Letier, P., Jimenez, M.N., Esbri, M.A., Musialik, P., Badiola, I., Goncalves, R., Coelho, A., Pfister, T., Majek, K., Pelka, M., Maslowski, A., Baptista, R: Search and rescue robotics - from theory to practice. InTech (2017)

  49. 49.

    Gilbert, G.R., Beebe, M.K: United States Department of Defense Research in Robotic Unmanned Systems for Combat Casualty Care (2010)

  50. 50.

    Theobald, D.: Mobile extraction-assist robot. US Patent 7,719,222, B2 (2010)

  51. 51.

    Samuels, D.J., Bock, H., Mauli, K., Stoy, W.: Emergency medical technician-basic. National Standard Curriculum (1996)

  52. 52.

    Hu, J., Lim, Y.-J.: Robotic first responder system and method. US Patent 20140150806 A1 (2014)

  53. 53.

    Iwano, Y., Osuka, K., Amano, H.: Development of stretcher component robots for rescue activity. IEEE Conf. Robot. Autom. Mechatronics 2, 1–3 (2004)

    Google Scholar 

  54. 54.

    Fisher, N., Gilbert, G.R.: Unmanned systems in support of future medical operations in dense urban environments. Small Wars J. (2016)

  55. 55.

    Johnson, K., Pearce, F., Westenskow, D., Ogden, L.L., Farnsworth, S., Peterson, S., White, J., Slade, T.: Clinical evaluation of the life support for trauma and transport (LSTATTM) platform. Crit. Care 6(5), 439–446 (2002)

    Google Scholar 

  56. 56.

    Velmahos, G.C., Demetriades, D., Ghilardi, M., Rhee, P., Petrone, P., Chan, L.S.: Life support for trauma and transport: A mobile ICU for safe in-hospital transport of critically injured patients. J. Am. Coll. Surg. 199(1), 62–68 (2004)

    Google Scholar 

  57. 57.

    Hanson, M.E.: Life support for trauma and transport (LSTAT) patient care platform: Expanding global applications and impact. In: RTO HFM Symposium on “Combat Casualty Care in Ground Based Tactical Situations, Trauma Technology and Emergency Medical Providers (2004)

  58. 58.

    Palmer, R.W.: Integrated Diagnostic and Treatment Devices for Enroute Critical Care of Patients within Theater (2010)

  59. 59.

    Wolf, A., Brown, H.B., Casciola, R., Costa, A., Schwerin, M., Shamas, E., Choset, H.: A mobile hyper redundant mechanism for search and rescue tasks. In: 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), vol. 3, pp. 2889–2895 (2003)

  60. 60.

    Chu, J.: A Robomedic for the Battlefield. MIT Technology Review (2009)

  61. 61.

    Beasley, R.a.: Medical robots: Current systems and research directions. J. Robot. 2012, 1–14 (2012)

    Google Scholar 

  62. 62.

    Thompson, K.: Squad multipurpose equipment transport (SMET) [Online]. Available: https://ndiastorage.blob.core.usgovcloudapi.net/ndia/2016/GRCCE/Thompson.pdf. [Accessed: 01 Dec 2018] (2015)

  63. 63.

    Massey, K.: Squad mission equipment transport (SMET): Lessons learned for industry. [Online]. Available: https://ndiastorage.blob.core.usgovcloudapi.net/ndia/2016/GRCCE/Massey.pdf. [Accessed: 01 Dec 2018] (2016)

  64. 64.

    Martin, L: SMSS: The right solution at the right time. [Online]. Available: https://www.lockheedmartin.com/content/dam/lockheed-martin/mfc/pc/smss/mfc-smss-pc.pdf. [Accessed: 01 Dec 2018] (2013)

  65. 65.

    Qinetiq: Titan: Dismounted troop support system. [Online]. Available: https://www.qinetiq-na.com/wp-content/uploads/TItanDataSheetLR.pdf. [Accessed: 01 Dec 2018]

  66. 66.

    HDT Global: PHDT protector robot squad multipurpose equipment transport (SMET). [Online]. Available: http://www.hdtglobal.com/wp-content/uploads/2015/01/HDTProtectorRobot26.pdf. [Accessed: 01 Dec 2018]

  67. 67.

    Massey, K.: One system... many missions. [Online]. Available: http://www.hdtglobal.com/wp-content/uploads/2015/02/ProtectorWhitePaper05.pdf. [Accessed: 01 Dec 2018] (2016)

  68. 68.

    Pande, R.U., Patel, Y., Powers, C.J., D’ancona, G., Karamanoukian, H.L.: The telecommunication revolution in the medical field: Present applications and future perspective. Curr. Surg. 60(6), 636–640 (2003)

    Google Scholar 

  69. 69.

    Avgousti, S., Christoforou, E.G., Panayides, A.S., Voskarides, S., Novales, C., Nouaille, L., Pattichis, C.S., Vieyres, P.: Medical telerobotic systems: Current status and future trends. BioMedical Engineering Online. BioMed Central 15(1), 96 (2016)

    Google Scholar 

  70. 70.

    Enayati, N., De Momi, E., Ferrigno, G.: Haptics in robot-assisted surgery: Challenges and benefits. IEEE Rev. Biomed. Eng. 9, 49–65 (2016)

    Google Scholar 

  71. 71.

    Morelli, L., Guadagni, S., Lorenzoni, V., Di Franco, G., Cobuccio, L., Palmeri, M., Caprili, G., D’Isidoro, C., Moglia, A., Ferrari, V., Di Candio, G., Mosca, F., Turchetti, G.: Robot-assisted versus laparoscopic rectal resection for cancer in a single surgeon’s experience: A cost analysis covering the initial 50 robotic cases with the da Vinci Si. Int. J. Colorectal Dis. 31(9), 1639–1648 (2016)

    Google Scholar 

  72. 72.

    Rosen, J., Hannaford, B.: Doc at a distance. IEEE Spectr. 43(10), 34–39 (2006)

    Google Scholar 

  73. 73.

    Lum, M.J.H., Friedman, D.C.W., Sankaranarayanan, G., King, H., Fodero, K., Leuschke, R., Hannaford, B., Rosen, J., Sinanan, M.N.: The RAVEN: Design and validation of a telesurgery system. Int. J. Rob. Res. 28(9), 1183–1197 (2009)

    Google Scholar 

  74. 74.

    Rosen, J., Lum, M., Sinanan, M., Hannaford, B.: Raven: Developing a surgical robot from a concept to a transatlantic teleoperation experiment. In: Surgical Robotics: Systems Applications and Visions, pp 159–197. Springer, Boston (2011)

    Google Scholar 

  75. 75.

    Li, Z., Milutinovic, D., Rosen, J.: Design of a multi-arm surgical robotic system for dexterous manipulation. J. Mech. Robot. 8(6), 061017 (2016)

    Google Scholar 

  76. 76.

    Hannaford, B., Rosen, J., Friedman, D.W., King, H., Roan, P., Cheng, L., Glozman, D., Ma, J., Kosari, S.N., White, L.: Raven-II: An open platform for surgical robotics research. IEEE Trans. Biomed. Eng. 60(4), 954–959 (2013)

    Google Scholar 

  77. 77.

    Hannaford, B., Friedman, D., King, H., Lum, M., Rosen, J., Sankaranarayanan, G.: Evaluation of RAVEN surgical telerobot during the NASA Extreme Environment Mission Operations (NEEMO) 12 mission, Univ. Washingt. Electr. Eng. Dep. Tech Rep (2009)

  78. 78.

    Garcia, P., Low, T.: Going the distance: Surgical robotics and remote medical care in the battlefield. Medical Design Briefs (2010)

  79. 79.

    Doarn, C.R., Anvari, M., Low, T., Broderick, T.J.: Evaluation of teleoperated surgical robots in an enclosed undersea environment. Telemed. e-Health 15(4), 325–335 (2009)

    Google Scholar 

  80. 80.

    Haidegger, T., Benyo, Z.: Surgical robotic support for long duration space missions. Acta Astronaut. 63 (7–10), 996–1005 (2008)

    Google Scholar 

  81. 81.

    Tesar, D., Kapoor, C., Pholsiri, C., Jung, E., Giem, G., Knoll, J.: Trauma pod: Operating room of the future (2006)

  82. 82.

    Garcia, P., Rosen, J., Kapoor, C., Noakes, M., Elbert, G., Treat, M., Ganous, T., Hanson, M., Manak, J., Hasser, C., Rohler, D., Satava, R.: Trauma pod: A semi-automated telerobotic surgical system. Int. J. Med. Robot. Comput. Assist. Surg. 5(2), 136–146 (2009)

    Google Scholar 

  83. 83.

    Anderson, J., Baltes, J., Tu, K.-Y.: Improving robotics competitions for real-world evaluation of AI. In: 2009 AAAI Spring Symposium on Experimental Design for Real-World Systems (2009)

  84. 84.

    Behnke, S.: Robot competitions-ideal benchmarks for robotics research. In: IROS-2006 Workshop on Benchmarks in Robotics Research

  85. 85.

    del Pobil, A.: Benchmarks in robotics research. IROS 2006 workshop (2006)

  86. 86.

    Schneider, F.E., Wildermuth, D., Brüggemann, B., Röhling, T: European land robot trial (elrob) towards a realistic benchmark for outdoor robotics. In: 1st international Conference on Robotics in Education (RiE2010), pp. 65–70 (2010)

  87. 87.

    Wettergreen, D.S., Barfoot, T.D.: Field and service robotics: Results of the 10th international conference. In: Springer Tracts in Advanced Robotics, vol. 113, pp. 533–546 (2016)

  88. 88.

    The European Land Robot Trial (ELROB); Official Webpage (2017) [Online]. Available: http://www.elrob.org/. [Accessed: 02 Dec 2018]

  89. 89.

    Robotic Competition - European Land-Robot Trial 2018 ELROB.org. [Online]. Available: http://www.elrob.org/elrob-2018. [Accessed: 02 Dec 2018]

  90. 90.

    Sheh, R., Schwertfeger, S., Visser, A: 16 Years of RoboCup rescue. KI - Künstliche Intelligenz 30 (3–4), 267–277 (2016)

    Google Scholar 

  91. 91.

    Kitano, H.: RoboCup rescue: A grand challenge for multi-agent systems. In: 4th International Conference on MultiAgent Systems, ICMAS 2000, vol. 22, no. 1, pp. 5–12 (2000)

  92. 92.

    Tadokoro, S., Kitano, H., Takahashi, T., Noda, I., Matsubara, H., Shinjoh, A., Koto, T., Takeuchi, I., Takahashi, H., Matsuno, F., Hatayama, M., Nobe, J., Shimada, S.: The RoboCup-Rescue project: A robotic approach to the disaster mitigation problem. In: IEEE International Conference on Robotics and Automation (2000 ICRA Millennium Conference), vol. 4, pp. 4089–4094 (2000)

  93. 93.

    Jacoff, A., Messina, E., Evans, J.: A standard test course for urban search and rescue robots. In: Performance metrics for intelligent systems Workshop (NIST SP 970), pp. 253–259 (2000)

  94. 94.

    RoboCup 2016 - Leipzig, Germany; Official Website (2016) [Online]. Available: http://www.robocup2016.org/en/. [Accessed: 02 Dec 2018]

  95. 95.

    DARPA Grand Challenge, Official Website. [Online]. Available: http://archive.darpa.mil/grandchallenge/. [Accessed: 02 Dec 2018]

  96. 96.

    Haynes, G.C., Stager, D., Stentz, A., Vande Weghe, J.M., Zajac, B., Herman, H., Kelly, A., Meyhofer, E., Anderson, D., Bennington, D., Brindza, J., Butterworth, D., Dellin, C., George, M., Gonzalez-Mora, J., Jones, M., Kini, P., Laverne, M., Letwin, N., Perko, E., Pinkston, C., Rice, D., Scheifflee, J., Strabala, K., Waldbaum, M., Warner, R.: Developing a robust disaster response robot: CHIMP and the robotics challenge. J. F. Robot. 34(2), 281–304 (2017)

    Google Scholar 

  97. 97.

    Kim, S., Kim, M.M., Lee, J., Hwang, S., Chae, J., Park, B., Cho, H., Sim, J., Jung, J., Lee, H., Shin, S., Kim, M.M., Kwak, N., Lee, Y., Lee, S., Lee, M., Yi, S., Chang, K.S.K.C., Park, J.: Approach of team SNU to the DARPA robotics challenge finals. IEEE-RAS Int. Conf. Humanoid Robot. 2015–Decem, 777–784 (2015)

    Google Scholar 

  98. 98.

    Kohlbrecher, S., Romay, A., Stumpf, A., Gupta, A., von Stryk, O., Bacim, F., Bowman, D.A., Goins, A., Balasubramanian, R., Conner, D.C.: Human-robot teaming for rescue missions: team ViGIR’s approach to the 2013 DARPA robotics challenge trials. J. F. Robot. 32(3), 352–377 (2015)

    Google Scholar 

  99. 99.

    Yi, S.-J., McGill, S.G., Vadakedathu, L., He, Q., Ha, I., Han, J., Song, H., Rouleau, M., Zhang, B.-T., Hong, D., Yim, M., Lee, D.D.: Team THOR’s entry in the DARPA robotics challenge trials 2013. J. F. Robot. 32(3), 315–335 (2015)

    Google Scholar 

  100. 100.

    Matos, A., Martins, A., Dias, A., Ferreira, B., Almeida, J.M., Ferreira, H., Amaral, G., Figueiredo, A., Almeida, R., Silva, F: Multiple robot operations for maritime search and rescue in euRathlon 2015 competition. In: OCEANS 2016 - Shanghai, pp. 1–7 (2016)

  101. 101.

    Winfield, A.F.T., Franco, M.P., Brueggemann, B., Castro, A., Limon, M.C., Ferri, G., Ferreira, F., Liu, X., Petillot, Y., Roning, J., Schneider, F., Stengler, E., Sosa, D., Viguria, A.: euRathlon 2015: A multi-domain multi-robot grand challenge for search and rescue robots. In: Towards Autonomous Robotic Systems, pp. 351–363 (2016)

    Google Scholar 

  102. 102.

    eu ROBOTICS: ERL emergency 2018-2019. [Online]. Available: https://www.eu-robotics.net/roboticsleague/events/erl-2018-2019-tournaments/index.html.[Accessed: 13 Aug 2018]

  103. 103.

    Ferreira, F., Ferri, G., Petillot, Y., Liu, X., Franco, M.P., Matteucci, M., Grau, F.J.P., Winfield, A.F.: Scoring robotic competitions: Balancing judging promptness and meaningful performance evaluation. In: 18th IEEE International Conference on Autonomous Robot Systems and Competitions ICARSC 2018, pp. 179–185 (2018)

  104. 104.

    Amigoni, F., Bastianelli, E., Berghofer, J., Bonarini, A., Fontana, G., Hochgeschwender, N., Iocchi, L., Kraetzschmar, G., Lima, P., Matteucci, M., Miraldo, P., Nardi, D., Schiaffonati, V.: Competitions for benchmarking: Task and functionality scoring complete performance assessment. IEEE Robot. Autom. Mag. 22(3), 53–61 (2015)

    Google Scholar 

  105. 105.

    Ben-Tzvi, P., Williams, A., Sebastian, B., Kumar, A., Saab, W.: Semi-autonomous victim extraction robot (SAVER), U.S. Provisional Patent Application No. 62/660,869 (2018)

  106. 106.

    Sebastian, B., Ben-Tzvi, P.: Physics based path planning for autonomous tracked vehicle in challenging terrain. J. Intell. Robot. Syst., pp. 1–16 (2018)

  107. 107.

    Sebastian, B., Williams, A., Ben-Tzvi, P.: Control of a head stabilization system for use in robotic disaster response. In: ASME 2017 International Mechanical Engineering Congress and Exposition Volume 4A: Dynamics, Vibration, and Control (2017)

Download references

Acknowledgements

This work is supported by the US Army Medical Research & Materiel Command’s Telemedicine & Advanced Technology Research Center (TATRC), under Contract No. W81XWH-16-C-0062. The views, opinions, and/or findings contained in this report are those of the authors and should not be construed as an official Department of the Army position, policy, or decision unless so designated by other documentation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pinhas Ben-Tzvi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Williams, A., Sebastian, B. & Ben-Tzvi, P. Review and Analysis of Search, Extraction, Evacuation, and Medical Field Treatment Robots. J Intell Robot Syst 96, 401–418 (2019). https://doi.org/10.1007/s10846-019-00991-6

Download citation

Keywords

  • Search and rescue robots
  • Casualty extraction
  • Human-robot interaction
  • Autonomous systems