Implementation and Analysis of Pattern Propagation Factor Based Radar Model for Path Planning

Abstract

Various path planning algorithms assume space as free and obstacles, and it is widely used in the robotic field. In examples of flight objects, space cannot be simply divided as free and obstacles because a risk exposure factor in the sky is dramatically changed based on radar sites and earth terrain. Previous researchers did not consider the risk exposure or used simple radar model to estimate the risk exposure. In this paper, a radar model based on pattern propagation factor is implemented to estimate the risk exposure. The model can simulate effects of terrain masking, 3D radar cross-section, refraction, and radar multipath, and compared paths with deterministic (Dijkstra’s algorithm), evolutionary (Discrete Genetic Algorithm), and Voronoi path planning methods.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Guerrero, J.A., Bestaoui, Y.: UAV path planning for structure inspection in windy environments. J. Intell. Robot. Syst. 69(1), 297–311 (2013). https://doi.org/10.1007/s10846-012-9778-2

    Article  Google Scholar 

  2. 2.

    Qu, Y., Zhang, Y., Zhang, Y.: A global path planning algorithm for fixed-wing UAVs. J. Intell. Robot. Syst. https://doi.org/10.1007/s10846-017-0729-9 (2017)

    Article  Google Scholar 

  3. 3.

    Sánchez Miralles, Á., Sanz Bobi, M.Á.: Global path planning in gaussian probabilistic maps. J. Intell. Robot. Syst. 40(1), 89–102 (2004). https://doi.org/10.1023/B:JINT.0000034339.13257.e6

    Article  Google Scholar 

  4. 4.

    Sasiadek, J.Z., Dulęba, I.: 3D local trajectory planner for UAV. J. Intell. Robot. Syst. 29(2), 191–210 (2000). https://doi.org/10.1023/a:1008108910932

    Article  MATH  Google Scholar 

  5. 5.

    Medeiros, F.L.L., Silva, J.D.S.d.: Computational modeling for automatic path planning based on evaluations of the effects of impacts of UAVs on the ground. J. Intell. Robot. Syst. 61(1), 181–202 (2011). https://doi.org/10.1007/s10846-010-9471-2

    Article  Google Scholar 

  6. 6.

    Shin, W.-Y., Shin, J.-J., Kim, B.-J., Jeong, K.-R.: Line segment selection method for fast path planning. Int. J. Control. Autom. Syst. 15(3), 1322–1331 (2017). https://doi.org/10.1007/s12555-015-0261-2

    Article  Google Scholar 

  7. 7.

    Gennery, D.B.: Traversability analysis and path planning for a planetary rover. Auton. Robot. 6(2), 131–146 (1999). https://doi.org/10.1023/a:1008831426966

    Article  Google Scholar 

  8. 8.

    Guo, Y., Song, A., Bao, J., Huatao, Z.: Optimal path planning in field based on traversability prediction for mobile robot, pp. 563–566. 2011 International Conference on Electric Information and Control Engineering, 15–17 April 2011 (2011)

  9. 9.

    Suger, B., Steder, B., Burgard, W.: Traversability analysis for mobile robots in outdoor environments: a semi-supervised learning approach based on 3D-lidar data. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), 26–30 May 2015, pp. 3941–3946 (2015)

  10. 10.

    Cang, Y., Borenstein, J.: A method for mobile robot navigation on rough terrain. In: 2004 IEEE International Conference on Robotics and Automation. Proceedings. ICRA ’04. April 26–May 1, 2004, vol. 3864, pp. 3863–3869 (2004)

  11. 11.

    Johansson, A., Dell’Acqua, P.: Knowledge-based probability maps for covert pathfinding. In: Boulic, R., Chrysanthou, Y., Komura, T (eds.) Motion in Games: Third International Conference, MIG 2010, Utrecht, The Netherlands, November 14–16, 2010. Proceedings, pp. 339–350. Springer, Berlin (2010)

  12. 12.

    Overmars, M., Karamouzas, I., Geraerts, R.: Flexible path planning using corridor maps. In: Halperin, D., Mehlhorn, K (eds.) Algorithms - ESA 2008: 16th Annual European Symposium, Karlsruhe, Germany, September 15–17, 2008. Proceedings, pp. 1–12. Springer, Berlin (2008)

  13. 13.

    Lamont, G.B., Slear, J.N., Melendez, K.: UAV swarm mission planning and routing using multi-objective evolutionary algorithms. In: IEEE Symposium on Computational Intelligence in Multi-criteria Decision-Making, 1–5 April 2007, pp. 10–20 (2007)

  14. 14.

    Mendonça, M.R.F., Bernardino, H.S., Neto, R.F.: Stealthy path planning using navigation meshes. In: Brazilian Conference on Intelligent Systems (BRACIS), 4–7 Nov. 2015, pp. 31–36 (2015)

  15. 15.

    Liu, W., Zheng, Z., Cai, K.: Adaptive path planning for unmanned aerial vehicles based on bi-level programming and variable planning time interval. Chin. J. Aeronaut. 26(3), 646–660 (2013). https://doi.org/10.1016/j.cja.2013.04.041

    Article  Google Scholar 

  16. 16.

    Turker, T., Sahingoz, O.K., Yilmaz, G.: 2D path planning for UAVs in radar threatening environment using simulated annealing algorithm, pp. 56–61. International Conference on Unmanned Aircraft Systems (ICUAS), 9–12 June 2015, In (2015)

  17. 17.

    Xiao-Wei, F., Zhong, L., Xiao-Guang, G.: Path planning for UAV in radar network area. In: 2010 Second WRI Global Congress on Intelligent Systems, 16–17 Dec. 2010, pp. 260–263 (2010)

  18. 18.

    Ruz, J.J., Pajares, G, de la Cruz, J.M., Arevalo, O.: UAV Trajectory Planning for Static and Dynamic Environments. INTECH Open Access Publisher (2009)

  19. 19.

    Boo-Sung, K., Hyo-Choong, B.: Optimal path planning for UAVs to reduce radar cross section. Int. J. Aeronaut. Space Sci. 8, 54–65 (2007). https://doi.org/10.5139/IJASS.2007.8.1.054

    Article  Google Scholar 

  20. 20.

    Luo, X., Liu, J., Meng, G.: Real time path planning in STAGE. In: 2011 International Conference on Modeling Simulation and Control 10 (2011)

  21. 21.

    Kabamba, P.T., Meerkov, S.M., Zeitz, F.H.: Optimal path planning for unmanned combat aerial vehicles to defeat radar tracking. J. Guid. Control. Dyn. 29(2), 279–288 (2006). https://doi.org/10.2514/1.14303

    Article  Google Scholar 

  22. 22.

    May, K.E., Khanh, D.V., Seng, T.C., Ping, Y.S., Sien, H.J.: Contour based path planning for unmanned aerial vehicles (UAVs) over hostile terrain, pp. 732–735. 2009 International Conference of Soft Computing and Pattern Recognition, 4–7 Dec. 2009 (2009)

  23. 23.

    Kan, E.M., Lim, M.H., Ong, Y.S., Tan, A.H., Yeo, S.P.: Extreme learning machine terrain-based navigation for unmanned aerial vehicles. Neural Comput. Appl. 22(3), 469–477 (2013). https://doi.org/10.1007/s00521-012-0866-9

    Article  Google Scholar 

  24. 24.

    Guanglei, M., Jinlong, G., Fengqin, S., Feng, T.: UAV real-time path planning using dynamic RCS based on velocity vector field. In: The 26th Chinese Control and Decision Conference (2014 CCDC), May 31 2014–June 2 2014, pp. 1376–1380 (2014)

  25. 25.

    Hongfu, L., Jing, C., Lincheng, S., Shaofei, C.: Low observability trajectory planning for stealth aircraft to evade radars tracking. Proc. Inst. Mech. Eng. G: J. Aerosp. Eng. 228(3), 398–410 (2013). https://doi.org/10.1177/0954410012474557

    Article  Google Scholar 

  26. 26.

    Zhan, W., Wang, W., Chen, N., Wang, C.: Efficient UAV path planning with multiconstraints in a 3D large battlefield environment. Math. Probl. Eng. 2014, 12 (2014). https://doi.org/10.1155/2014/597092

    Article  Google Scholar 

  27. 27.

    Zhang, M., Su, C., Liu, Y., Hu, M., Zhu, Y.: Unmanned aerial vehicle route planning in the presence of a threat environment based on a virtual globe platform. ISPRS Int. J. Geo-Information 5(10), 184 (2016)

    Article  Google Scholar 

  28. 28.

    Mahafza, B.R.: Radar Systems Analysis and Design using MATLAB 3rd Edn, p. 296. ISBN: 1138582794 (2004)

  29. 29.

    Barrios, A.E.: Considerations in the development of the advanced propagation model (APM) for U.S. Navy applications, pp. 77–82, Proceedings of the International Conference on Radar (IEEE Cat. No.03EX695), 3–5 Sept. 2003 (2003)

  30. 30.

    Gubelli, D., Krasnov, O.A., Yarovyi, O.: Ray-tracing simulator for radar signals propagation in radar networks. In: 2013 European Radar Conference, 9–11 Oct. 2013, pp. 73–76 (2013)

  31. 31.

    Kanter, I.: Exact detection probability for partially correlated rayleigh targets. IEEE Trans. Aerosp. Electron. Syst. AES-22(2), 184–196 (1986). https://doi.org/10.1109/TAES.1986.310753

    Article  Google Scholar 

  32. 32.

    van Vleck, J.H.: The absorption of microwaves by oxygen. Phys. Rev. 71(7), 413–424 (1947). https://doi.org/10.1103/PhysRev.71.413

    Article  Google Scholar 

  33. 33.

    Mahafza, B.R.: Radar Systems Analysis and Design Using MATLAB. CRC Press, Boca Raton (2000)

    Google Scholar 

  34. 34.

    Shatz, M.P., Polychronopoulos, G.H.: An algorithm for the evaluation of radar propagation in the spherical Earth diffraction region. IEEE Trans. Antennas Propag. 38(8), 1249–1252 (1990). https://doi.org/10.1109/8.56962

    Article  Google Scholar 

  35. 35.

    ITU-R P.453-13. https://www.itu.int. Accessed 12 2017

  36. 36.

    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959). https://doi.org/10.1007/bf01386390

    MathSciNet  Article  MATH  Google Scholar 

  37. 37.

    Foley, J.: Breshman’s line algorithm. In: Electrochemistry, Proceedings of the First Conference Held in Sydney Feb 1963, pp. 433–436 (1963)

  38. 38.

    IMINT & Analysis. http://geimint.blogspot.kr/

  39. 39.

    Kim, J., Woo, S.H.: Reference test maps for path planning algorithm test. Int. J. Control. Autom. Syst. 16(1), 397–401 (2018). https://doi.org/10.1007/s12555-017-0059-5

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sang-Hyo Arman Woo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 13.6 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Woo, S.A., Shin, J. & Kim, J. Implementation and Analysis of Pattern Propagation Factor Based Radar Model for Path Planning. J Intell Robot Syst 96, 517–528 (2019). https://doi.org/10.1007/s10846-018-0973-7

Download citation

Keywords

  • Path planning
  • Radar exposure map
  • Radar
  • Refraction
  • Radar multi-path
  • 3D RCS
  • Terrain masking