Advertisement

Design and Robust Motion Control of a Planar 1P-2P RP Hybrid Manipulator for Lower Limb Rehabilitation Applications

  • M. Vasanthakumar
  • B. Vinod
  • J. K. Mohanta
  • S. MohanEmail author
Article
  • 92 Downloads

Abstract

This paper addresses a robust motion control design of a planar 1P-2P RP hybrid manipulator for performing the lower limb rehabilitation treatments. The effectiveness and performances of the proposed system along with the motion control scheme is demonstrated using the real-time experiments. Further the robustness and sensitivity of the proposed control scheme is analyzed under different working conditions. In addition, the applicability of the proposed system is demonstrated successfully on an in-house fabricated prototype as a continuous passive sitting type lower limb rehabilitation mechanism in terms of clinical gait pattern generation and the gait-tracking task.

Keywords

Lower limb rehabilitation Gait trainer Robust motion control Continuous passive range of motion Hybrid manipulator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Merlet, J.P.: Parallel robots. Springer, Berlin (2016)zbMATHGoogle Scholar
  2. 2.
    Briot, S., Bonev, I.A.: Are parallel robots more accurate than serial robots?. Trans. Can. Soc. Mech. Eng. 31(4), 445–455 (2007)CrossRefGoogle Scholar
  3. 3.
    Joubair, A., Slamani, M., Bonev, I.A.: A novel XY-Theta precision table and a geometric procedure for its kinematic calibration. Robot. Comput. Integr. Manuf. 28(1), 57–65 (2012)CrossRefGoogle Scholar
  4. 4.
    Bonev, I.A.: Planar parallel mechanism and method. US Patent 7707907, B2 (2010)Google Scholar
  5. 5.
    Yu, A., Bonev, I.A., Murray, P.Z.: Geometric approach to the accuracy analysis of a class of 3 DOF planar parallel robots. Mech. Mach. Theory 43, 364–375 (2008)CrossRefGoogle Scholar
  6. 6.
    Rezaei, A., Akbarzadeh, A.: Position and stiffness analysis of a new asymmetric 2PRR-PPR parallel CNC machine. Adv. Robot. 27(2), 133–145 (2013)CrossRefGoogle Scholar
  7. 7.
    Belda-Lois, J.M., Horno, S.M., Bermejo-Bosch, I.: Rehabilitation of gait after stroke: a review towards a top-down approach. J. Neuroeng. Rehabil. 8, 66 (2011)CrossRefGoogle Scholar
  8. 8.
    Lawrence, E.S., Coshall, C., Dundas, R., Stewart, J., Rudd, A.G., Howard, R., Wolfe, C.D.: Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke. 32(6), 1279–1284 (2001)CrossRefGoogle Scholar
  9. 9.
    Azuwan, M., Dzahir, M., Yamamoto, S.: Recent trends in lower-limb robotic rehabilitation orthosis: Control scheme and strategy for pneumatic muscle actuated gait trainers. Robotics 3, 120–148 (2014)CrossRefGoogle Scholar
  10. 10.
    Kwakkel, G., Kollen, B, Wagenaar, R: Long term effects of intensity of upper and lower limb training after stroke: A randomised trial. J. Neurol. Neurosurg. Psychiatry 72(4), 473–479 (2002)Google Scholar
  11. 11.
    Takeuchi, N., Izumi, S.: Rehabilitation with poststroke motor recovery: A review with a focus on neural plasticity. Stroke Research and Treatment 2013(128641), 1–13 (2013)CrossRefGoogle Scholar
  12. 12.
    D’iaz, I., Gil, J.J., S’anchez, E.: Lower-limb robotic rehabilitation: Literature review and challenges. J. Robot. 2011(759764), 1–11 (2011)Google Scholar
  13. 13.
    Lyu, M., Chen, W., Ding, X., Wang, J., Bai, S., Ren, H.: Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation featured. Rev. Sci. Instrum. 87, 104301–1–104301-12 (2016)CrossRefGoogle Scholar
  14. 14.
    Schmitt, C., Metrailler, P., Al-Khodairy, A.: The motion maker: a rehabilitation system combining an orthosis with closed-loop electrical muscle stimulation. In: Proceedings of the 8th Vienna international workshop on functional electrical stimulation, Vienna, Austria, pp 117–120 (2004)Google Scholar
  15. 15.
    Akdoan, E., Adli, M.A.: The Design and control of a therapeutic exercise robot for lower limb rehabilitation: Physiotherabot. Mechatronics 21(3), 509–522 (2011)CrossRefGoogle Scholar
  16. 16.
    Monaco, V., Galardi, G., Coscia, M., Martelli, D., Micera, S.: Design and evaluation of NEUROBike: A neurorehabilitative platform for bedridden post-stroke patients. IEEE Trans. Neural Syst. Rehabil. Eng. 20(6), 845–852 (2012)CrossRefGoogle Scholar
  17. 17.
    Bouri, M., Gall, B.L., Clavel, R.: A new concept of parallel robot for rehabilitation and fitness: the lambda. In: Proceedings of the IEEE international conference on robotics and biomimetics (ROBIO 09), Bangkok, Thailand, pp 2503–2508 (2009)Google Scholar
  18. 18.
    Mohanta, J.K., Saxena, C., Gupta, G., Santhakumar, M.: Kinematic analysis of a passive sitting/lying type lower limb rehabilitation robot. In: Proceedings of the 2nd international conference on machines and mechanisms, Kanpur, India, pp 1–12 (2015)Google Scholar
  19. 19.
    Lim, F.M., Foong, R., Yu, H.: A supine gait training device for stroke rehabilitation. J. Med. Dev. 8 (2), 512–515 (2014).  https://doi.org/10.1115/1.4027026 Google Scholar
  20. 20.
    Mohan, S., Mohanta, J.K., Kurtenbach, S., Paris, J., Corvesand, B., Huesing, M.: Design, development and control of a 2PRP-2PPR planar parallel manipulator for lower limb rehabilitation therapies. Mech. Mach. Theory 112, 272–294 (2017)CrossRefGoogle Scholar
  21. 21.
    Mohanta, J.K., Santhakumar, M.: A 4PRP redundant parallel planar manipulator for the purpose of lower limb rehabilitationm, Advancements in Automation Robotics and Sensing, pp. 53–62 (2016)Google Scholar
  22. 22.
    Neuhaus, P.D., Noorden, J.H., Craig, T.J., Torres, T., Kirschbaum, J., Pratt, J.E.: Design and evaluation of Mina: A robotic orthosis for paraplegics. In: 2011 IEEE international conference on rehabilitation robotics, Zurich, pp 1–8 (2011)Google Scholar
  23. 23.
    Aguirre-Ollinger, G.: Exoskeleton control for lower-extremity assistance based on adaptive frequency oscillators: adaptation of muscle activation and movement frequency. Proc Inst Mech Eng H 229, 52–68 (2015)CrossRefGoogle Scholar
  24. 24.
    Meng, W., Liu, Q., Zhou, Z., Ai, Q., Sheng, B., Xie, S.: Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics 31, 132–145 (2015)CrossRefGoogle Scholar
  25. 25.
    Li, N., Yan, L., Qian, H., Wu, H., Wu, J., Men, S.: Review on lower extremity exoskeleton robot. The Open Automation and Control Systems Journal 7, 441–453 (2015)Google Scholar
  26. 26.
    Stansfield, B.W., Hillman, S.J., Hazlewood, M.E., Robb, J.E.: Regression analysis of gait parameters with speed in normal children walking at self-selected speeds. Gait & Posture 23, 288–294 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Robotics Application Engineer - Technical LeadKawasaki Heavy Industries Pvt LtdChennaiIndia
  2. 2.Robotics and Automation EngineeringPSG College of TechnologyCoimbatoreIndia
  3. 3.Discipline of Mechanical EngineeringIndian Institute of Technology IndoreIndoreIndia

Personalised recommendations