New Forward Kinematic Model of Parallel Robot Par4

Abstract

Modeling parallel robots is a famous problem of research especially the Forward Kinematic Model (FKM). It is very difficult to solve it compared to serial manipulators and it is also hard to obtain its analytic solution. Most researchers have resorted to the numerical methods. But, these have a lot of problems : the divergence caused by the bad choice of the initial condition and providing more than one feasible solution. To solve these problems, an analytical method is proposed in this article. In this paper, the FKM of the parallel robot Par4 is determined using the Modified Denavit Hartenberg Method (MDHM). This method facilitates greatly the forward kinematic problem of parallel robot. The MDHM is powerful, useful and can be easily used for the closed loop robots. It is very accurate and provides a unique solution. In the best of our knowledge, the MDHM isn’t applied to the parallel robot Par4 to give a relationship between its operational and articular variables. After a short presentation of the robot Par4, the FKM is determined using the MDHM method. The results of this method will be compared to the existing numerical method like the iterative Newton method (INM).

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Gui, G., Zhang, H., Zhang, D.: Analysis of the kinematic accuracy reliability of a 3 -DOF parallel robot manipulator. Int. J. Adv. Robot. Syst. 12, 324–332 (2015)

    Google Scholar 

  2. 2.

    Baron, L., Angeles, J.: The direct kinematics of parallel manipulators under joint-sensor redundancy. IEEE Trans Robot Autom. 16, 12–19 (2000)

    Article  Google Scholar 

  3. 3.

    Arian, B., Mansour, N.B.: Optimal design of a spatial six-cable robot, Proc 2nd IASTED Int. Conf. Robot, pp. 134–141 (2011)

  4. 4.

    Bahrami, A., Tafaoli, M., Bahrami, N.M.: Fuzzy Logic Based Active Vibration Control of Piezoelectric Stewart Platform. International Journal of Mechanical, Industrial Science and Engineering 8(1), 72–79 (2014)

    Google Scholar 

  5. 5.

    Merlet, J.P.: Solving the forward kinematics of a Gough-type parallel manipulator with interval analysis. Int. J. Robot. Res. 23, 221–235 (2004)

    Article  Google Scholar 

  6. 6.

    Bahrami, A., Tafaoli-Masoule, M., Bahrami, M.: Fuzzy control of Piezoelectric Stewart Platform for active vibration control purpose, TSEST, Transaction on Control and Mechanical Systems, pp. 356—361 (2012)

  7. 7.

    Lee, T.Y., Shim, J.K.: Forward kinematics for the general Stewart platform using algebraic elimination. Mech. Theory 36, 1073—1085 (2001)

    MATH  Google Scholar 

  8. 8.

    Raghavan, D.: The Stewart platform of general geometry has 40 configurations. ASME Design and Auto, Conf Chicago, pp. 277–281 (1993)

    Article  Google Scholar 

  9. 9.

    Bahrami, A., Tafaoli, M., Bahrami, M.N.: Active vibration control of piezoelectric stewart platform based on fuzzy control, International Journal of Material and Mechanical Engineering (IJMME), pp. 17—22 (2013)

  10. 10.

    Nabat, V., Company, O., Krut, S.: Par4: Very high speed parallel robot for pick-and-place, IEEE international conference on intelligent robots and systems, Canada, pp. 553–558 (2005)

  11. 11.

    Corbel, D., Company, O., Nabat, V.: Geometrical calibration of the high speed robot Par4 using a laser tracker, Proceedings of the 12t h IEEE international conference on methods and models in automation and robotics Poland, pp. 687—692 (2006)

  12. 12.

    Arian, B., Behnam, A., Mansour, N.B.: Design optimization of a 3-D three cable driven manipulator, ASME international design engineering technical conferences (IDETC/CIE), pp. 753—761 (2012)

  13. 13.

    Arian, B., Mansour, N.B.: Optimal design of a spatial four-cable-driven parallel manipulator, IEEE International Conference on Robotics and Biomimetics New York, pp. 2143–2149 (2011)

  14. 14.

    Arian, B., Mansour, N.B.: Multi objective design of spatial cable robots. In: Proc 2nd IASTED Int. Conf. Robot, pp. 345–352 (2011)

  15. 15.

    Bahrami, A., Teimourian, A.: Workspace analysis of 6–6 cable-suspended parallel robots. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering 10(12), 1923–1927 (2016)

    Google Scholar 

  16. 16.

    Jahanbakhsh, H., Arian, B., Mansour, N.B.: Workspace sensitivity analysis of spatial cable robots, International Conference on Robotics (IASTED), At Phuket,, Thailand (2010)

  17. 17.

    Griffi, M.: A forward displacement analysis of clan of stewart platforms. J. Robot. Syst. 6, 703–720 (1989)

    Article  Google Scholar 

  18. 18.

    Wohlkart, K.: Dislpacement analysis of the general spherical Stewart platform. Mech. Mach. Theory 29, 581–589 (1994)

    Article  Google Scholar 

  19. 19.

    Zhao, Y., Zhu, H., Cai, G.: Geometric solution for direct kinematic of Delta parallel robot, Harbin Gongye Daxue Xuebao. Journal of Harbin Institute of Technology 35, 25–27 (2003)

    Google Scholar 

  20. 20.

    Hertz, R.B., Hughes, P.C.: Kinematic analysis of a general double-tripod parallel manipulator. Mech. Mach. 33(6), 683–696 (1998)

    Article  Google Scholar 

  21. 21.

    Song, S.K., Kwon, D.S.: A tetrahedrom approach for a unique closed -form solution of the forward kinematics of six-dof parallel mechanisms with multiconnected joints. J. Robot. Syst. 19, 269–281 (2002)

    Article  Google Scholar 

  22. 22.

    Zhao, J., Zhu, Y.H., Cai, H.G.: Geometric solution for direct kinematic solution for direct kinematics of Delta parallel robot. Journal of Harlin Institue of Technology 35, 25–27 (2003). Harbin

    Google Scholar 

  23. 23.

    Huang, X., Liao, Q., Wei, S., Qiang, X., Huang, S.: Forward kinematics of the 6 - 6 stewart platform with planar base and platform using algebraic elimination, Proceedings of the IEEE international conference on automation and Zogistics, ICAL, pp. 2655–2659 (2007)

  24. 24.

    Huang, X., Liao, Q., Wei, S., Li, D.: Forward kinematics analisis of the general 6 - 6 platform parallel mechanism based on algebraic elimination. J. Mech. Eng. 45, 56–61 (2009)

    Article  Google Scholar 

  25. 25.

    Deshmukh, G., Pecht, M.: A modified Powell method for six degrees-of-freedom platform kinematics. Comput. Struct. 34, 485–491 (1990)

    Article  Google Scholar 

  26. 26.

    Denavit, J., Hartenberg, R.: A kinematic notation for lower-pair mechanisms based on matrices. Asme journal of applied Mechanisms 22, 215–221 (1955)

    MathSciNet  MATH  Google Scholar 

  27. 27.

    Khalil, W., Kleinfinger, J.: A new geometric notation for open and closed-loop robots, Proc IEEE conf on robotics and automation, San Francisco, pp. 1174–1180 (1986)

  28. 28.

    Krut, S., Nabat, V., Company, O.: A high speed parallel robot for scara motions, Proceedings of the IEEE international conference on robotics and automation (ICRA’04), New Orleans, LA, USA, vol. 4, pp. 4109—4115 (2004)

  29. 29.

    Dai, X., Huang, Q., Jiang, H., Junwei, H.: Kinematics Analisis of a 3-dof Rotationnal parallel mecanism, Modelling, simulation and optimisation, International workshop WMSo, pp. 404–407 (2008)

  30. 30.

    Nguyen, C.C., Zhou, Z.L., Antraze, S.S., Campell, C.E.: Efficient computation of forward kinematics and jacobian matrix of a stewart platform- based manipulator, Conference Proceedings, IEEE SOUTHEAT CON, pp. 869–874 (1991)

  31. 31.

    Arshad, M.: Solution of Forward Kinematics Model of Six Degrees of Freedom Parallel Robot Manipulator. IEE International Conference on Emerging Technologies, Islamabad, vol. 18, pp. 393–398 (2005)

  32. 32.

    Jonathan, H.: A framework for generalising the Newton method and other iterative methods from Euclidean space to manifolds (2015)

  33. 33.

    Stoughton, R., Arai, T.: Optimal sensor placement for forward kinematics evaluation of a 6-Dof parallel link manipulator, IEEE RSJ Int workshop intelligent robots systems, pp. 785–790 (1991)

  34. 34.

    Han, K., hung, W., Youm, Y.: Local structurization for thr forward kinematics of parallel manipulators using extra sensor data. In: Proc IEEE int conference robotics automatics, pp. 514–520 (1995)

  35. 35.

    Dehghani, M., Ahmadi, A., Khayatian, A., Eghtesad, M., Farid, M.: Neural network solution for forward kinematics problem of HEXA parallel robot, Proceedings of the American control conferences, pp. 4214–4219 (2008)

  36. 36.

    Sadjadian, H., Taghird, H.: Compaison of different methods for computing the forward kinematics of a redundant parallel manipulator. Adv. Robot. 22, 657–687 (2008)

    Article  Google Scholar 

  37. 37.

    Janot, A.: Contribution à la modélisation et à l’identification des interfaces haptiques [Ph.D. thesis], Nantes univercity (2007)

  38. 38.

    Boudreau, R., Turkhan, N.: Solving the forward kinematics of parallel manipulators with a genetic algorithms, vol. 13. Moncton (1996)

  39. 39.

    Li, L., Zhu, Q., Xu, L.: Solution for forward kinematics of 6-dof parallel robot based on particle swarm optimisation, Proceedings of IEEE international conference on mechatronics and automatics, pp. 2968–2973 (2007)

  40. 40.

    Rolland, L., Chandra, R.: Forward kinematics of the 6-6 general parallel manipulator using real coded genetic algorithms, IEEE, ASME international conference on advanced Intelligent Mechatronics, AIM, pp. 1637–1642 Singapore (2009)

  41. 41.

    Singh1, Y., Mohan2, S.: Inverse kinematic modeling of a 6 - D O F(6 - C R S) parallel spatial manipulator, 5th international and 26th all India manufacturing technology, design and research conference, Guwahati, Assam, India (2014)

  42. 42.

    Ammar, A: Modelisation dynamique d’un robot parallele forme de plusieurs module empiles. Magister en Génie Mécanique, Univercity l’Arbi Ben M’Hidi D’oum el Bouaghi (2011)

    Google Scholar 

  43. 43.

    Maya, M., Castillo, E., Lomelí, A.: Workspace and Payload-Capacity of a New Reconfigurable Delta Parallel Robot. Adv. Robot. 10, 56–58 (2013)

    Google Scholar 

  44. 44.

    Peter, C.: Robotics vision and control: Fundamental algorithms in MATLAB. Springer Tracts in Advanced Robotics, Berlin (2011)

    Google Scholar 

  45. 45.

    Khalil, W.: Dynamic modelling of robots using recursive Newton-Euler techniques, Robot Manipulators and Control Systems (2011)

  46. 46.

    Merlet, J.P.: Parallel robots, 2nd edn., p. 128. Springer, Nol (2006)

    Google Scholar 

  47. 47.

    Kovalchuk, A., Akhmetova, F.: Denavit-Hertanberg coordinate system for Robot with tree-like Kinematic structure, International Journal of Robotic and Automatic (IJRA) Russia (2017)

  48. 48.

    Yao–nan, W., GAOXiao, L.: Manipulator control system based on CAN, Institute of automation, East China university of science and technology, Shanghai, China (2016)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sonda Abid M’hiri.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

M’hiri, S.A., Ben Romdhane, N.M. & Damak, T. New Forward Kinematic Model of Parallel Robot Par4. J Intell Robot Syst 96, 283–295 (2019). https://doi.org/10.1007/s10846-018-0962-x

Download citation

Keywords

  • Modified Denavit Hartenberg method
  • Geometric modeling
  • Parallel robot
  • Par4
  • Iterative Newton method