Advertisement

Real-Time UAS Guidance for Continuous Curved GNSS Approaches

  • Alessandro Gardi
  • Roberto Sabatini
  • Subramanian Ramasamy
  • Trevor Kistan
Article
  • 36 Downloads

Abstract

This paper presents new efficient guidance algorithms allowing Unmanned Aircraft Systems (UAS) to avoid a variety of Global Navigation Satellite System (GNSS) continuity and integrity performance threats detected by an Aircraft Based Augmentation System (ABAS). In particular, the UAS guidance problem is formulated as an optimal control-based Multi-Objective Trajectory Optimization (MOTO) problem subject to suitable dynamic and geometric constraints. Direct transcription methods of the global orthogonal collocation (pseudospectral) family are exploited for the solution of the MOTO problem, generating optimal trajectories for curved GNSS approaches in real-time. Three degrees-of-freedom aircraft dynamics models and suitable GNSS satellite visibility models based on Global Positioning System (GPS) constellation ephemeris data are utilised in the MOTO solution algorithm. The performance of the proposed MOTO algorithm is evaluated in representative simulation case studies adopting the JAVELIN UAS as the reference platform. The paper focusses on descent and initial curved GNSS approach phases in a Terminal Maneuvering Area (TMA) scenario, where multiple manned/unmanned aircraft converge on the same short and curved final GNSS approach leg. The results show that the adoption of MOTO based on pseudospectral methods allows an efficient exploitation of ABAS model-predictive augmentation features in online GNSS guidance tasks, supporting the calculation of suitable arrival trajectories in 7 to 16 s using a normal PC.

Keywords

GNSS integrity GNSS augmentation Avionics based integrity augmentation Unmanned aircraft systems Trajectory optimization Flight planning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Basset, G., Xu, Y., Yakimenko, O.A.: Computing short-time aircraft maneuvers using direct methods. J. Comput. Syst. Sci. Int. 49(3), 481–513 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bearman, P., Gardner, R., Green, J., Maynard, G., et al.: Air Travel - Greener By Design - Annual Report 2014–2015. RAeS, London (2015)Google Scholar
  3. 3.
    Ben-Asher, J.Z.: Optimal control theory with aerospace applications. In: American Institute of Aeronautics and Astronautics (AIAA). Reston (2010)Google Scholar
  4. 4.
    Betts, J.T.: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming. SIAM, Philadelphia (2010)CrossRefzbMATHGoogle Scholar
  5. 5.
    Brix, K., Canuto, C., Dahmen, W.: Legendre-Gauss-Lobatto grids and associated nested dyadic grids. In: Aachen Institute for Advanced Study in Computational Engineering Science (2013)Google Scholar
  6. 6.
    Burston, M., Sabatini, R., Gardi, A., Clothier, R.: Reverse engineering of a fixed wing unmanned aircraft 6-DoF model based on laser scanner measurements. In: 2014 IEEE International Workshop on Metrology for Aerospace, MetroAeroSpace 2014 Proceedings, Benevento (2014)Google Scholar
  7. 7.
    Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods—Fundamentals in Single Domains. Springer, Berlin (2007)zbMATHGoogle Scholar
  8. 8.
    CASA: Navigation authorisations: APV Baro-VNAV. In: Civil Aviation Safety Authority (CASA) of Australia Advisory Circular AC 91U-II. Canberra (2012)Google Scholar
  9. 9.
    Chircop, K., Gardi, A., Zammit Mangion, D., Sabatini, R.: A new computational technique for the generation of optimised aircraft trajectories. Nonlinear Eng. 6(4), 249–262 (2017)CrossRefGoogle Scholar
  10. 10.
    den Boer, R., Beers, C., Sanchez Escalonilla, P., Gomez de Segura, A., et al.: SOURDINE II Final Report (2006)Google Scholar
  11. 11.
    Gardi, A., Sabatini, R.: Descent 4D trajectory optimisation for curved GNSS approaches. In: 2017 International Conference on Unmanned Aircraft Systems. ICUAS, Miami (2017)Google Scholar
  12. 12.
    Gardi, A., Sabatini, R., Ramasamy, S.: Multi-objective optimisation of aircraft flight trajectories in the ATM and avionics context. Prog. Aerosp. Sci. 83, 1–36 (2016)CrossRefGoogle Scholar
  13. 13.
    Khardi, S., Abdallah, L.: Optimization approaches of aircraft flight path reducing noise: comparison of modeling methods. Appl. Acoust. 73(4), 291–301 (2012)CrossRefGoogle Scholar
  14. 14.
    Kistan, T., Gardi, A., Sabatini, R., Ramasamy, S., et al.: An evolutionary outlook of air traffic flow management techniques. Prog. Aerosp. Sci. 88, 15–42 (2017)CrossRefGoogle Scholar
  15. 15.
    Kuenz, A., Mollwitz, V., Korn, B.: Green trajectories in high traffic TMAS. In: 26th DASC Digital Avionics Systems Conference—4-Dimensional Trajectory-Based Operaions: Impact on Future Avionics and Systems, pp. 1B21–1B211. Dallas (2007)Google Scholar
  16. 16.
    Margaria, D., Falletti, E., Acarman, T.: The need for GNSS position integrity and authentication in ITS: conceptual and practical limitations in urban contexts.. In: 2014 IEEE Intelligent Vehicles Symposium, IV 2014, Proceedings, pp. 1384–1389. Dearborn (2014)Google Scholar
  17. 17.
    Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26(6), 369–395 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Mujumdar, A., Padhi, R.: Evolving philosophies on autonomous obstacle/collision avoidance of unmanned aerial vehicles. J. Aerosp. Comput. Inf. Commun. 8(2), 17–41 (2011)CrossRefGoogle Scholar
  19. 19.
    Rao, A.V.: Survey of numerical methods for optimal control. Adv. Astronaut. Sci. 135, 497–528 (2010)Google Scholar
  20. 20.
    Rotondo, G.: Processing and Integrity of DC/DF GBAS for CAT II/III Operations. Institut Nationale Polytechnique de Toulouse (INP Toulouse), Toulouse (2016)Google Scholar
  21. 21.
    Sabatini, R., Moore, T., Hill, C.: Avionics-based GNSS integrity augmentation synergies with SBAS and GBAS for safety-critical aviation applications. In: 35th DASC Digital Avionics Systems Conference, DASC 2016. Sacramento (2016)Google Scholar
  22. 22.
    Sabatini, R., Moore, T., Ramasamy, S.: Global navigation satellite systems performance analysis and augmentation strategies in aviation. Prog. Aerosp. Sci. 95, 45–98 (2017)CrossRefGoogle Scholar
  23. 23.
    Toebben, H.H., Mollwitz, V., Bertsch, L., Geister, R.M., et al.: Flight testing of noise abating required navigation performance procedures and steep approaches. Proc. Inst. Mech. Eng. Part H: J. Aerosp. Eng. 228(9), 1586–1597 (2014)Google Scholar
  24. 24.
    Tsourdos, A., White, B., Shanmugavel, M. (eds.): Cooperative Path Planning of Unmanned Aerial Vehicles. Wiley, Chicester (2011)Google Scholar
  25. 25.
    Yu, B., Shu, W., Bian, W.: Research on modelling of aviation piston engine for the hardware-in-the-loop simulation. Mater. Sci. Eng. 157, 012004 (2016)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Alessandro Gardi
    • 1
  • Roberto Sabatini
    • 1
  • Subramanian Ramasamy
    • 1
  • Trevor Kistan
    • 2
  1. 1.School of EngineeringRMIT UniversityMelbourneAustralia
  2. 2.THALES Australia – Air Traffic ManagementMelbourneAustralia

Personalised recommendations