Advertisement

Journal of Intelligent & Robotic Systems

, Volume 94, Issue 2, pp 423–437 | Cite as

Partially-Decoupled Service Agent - Transport Agent Task Allocation and Scheduling

  • Matthew J. BaysEmail author
  • Thomas A. Wettergren
Article
  • 67 Downloads

Abstract

We present an approach to performing efficient schedule generation of a heterogeneous team of autonomous agents in a service agent - transport agent scenario where the task allocation and scheduling components are partially-decoupled. In the scenario, service agents must perform tasks at a number of locations. The agents are free to move between locations, however the agents may also be transported throughout the region by a limited number of faster-moving transport agents. The goal of the problem is to plan a schedule of service agent and transport agent actions such that all locations are serviced in the shortest amount of time. While in previous work we formulated the problem as a holistic mixed-integer linear program, we present a novel method to solve the problem in a hierarchical and partially-decoupled manner for faster optimization and to require less information to be processed and communicated in a centralized manner to perform the schedule planning. The original solution method required up to 20 minutes to obtain an efficient solution. The new methodology, using hierarchical task allocation and a bidding-based scheduling algorithm, can create an efficient solution in seconds.

Keywords

Multi-agent systems Scheduling Optimization Task allocation Mixed-integer linear programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was funded by the Office of Naval Research (ONR) Independent Applied Research program and ONR Code 32.

References

  1. 1.
    Bays, M.J., Tatum, R.D., Cofer, L., Perkins, J.R.: Automated scheduling and mission visualization for mine countermeasure operations. In: OCEANS 2015-MTS/IEEE Washington, pp 1–7. IEEE (2015)Google Scholar
  2. 2.
    Bays, M.J., Wettergren, T.A.: A solution to the service agent transport problem. In: IEEE International Conference on Intelligent Robots and Systems, vol. 89, pp 15–26 (2015)Google Scholar
  3. 3.
    Bays, M.J., Wettergren, T.A.: Service agent-transport agent task planning incorporating robust scheduling techniques. Robot. Autonom. Syst. 89, 15–26 (2017)CrossRefGoogle Scholar
  4. 4.
    Bredstrm, D., Rnnqvist, M.: Combined vehicle routing and scheduling with temporal precedence and synchronization constraints. Eur. J. Oper. Res. 191(1), 19–31 (2008).  https://doi.org/10.1016/j.ejor.2007.07.033. http://www.sciencedirect.com/science/article/pii/S0377221707007436 CrossRefGoogle Scholar
  5. 5.
    Choi, H.L., Brunet, L., How, J.P.: Consensus-based decentralized auctions for robust task allocation. IEEE Trans. Robot. 25(4), 912–926 (2009)CrossRefGoogle Scholar
  6. 6.
    Confessore, G., Giordani, S., Rismondo, S.: A market-based multi-agent system model for decentralized multi-project scheduling. Ann. Oper. Res. 150, 115–135 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dahl, T.S., Matarić, M., Sukhatme, G.S.: Multi-robot task allocation through vacancy chain scheduling. Robot. Auton. Syst. 57(6), 674–687 (2009)CrossRefGoogle Scholar
  8. 8.
    Davis, L.: Applying adaptive algorithms to epistatic domains. In: International Joint Conference on Artificial Intelligence (1985)Google Scholar
  9. 9.
    Dechter, R.: Temporal constraint networks. Artif. Intell. 49, 61–95 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Drexl, M.: Synchronization in vehicle routing – a survey of vrps with multiple synchronization constraints. Transp. Sci. 46(3), 297–316 (2012). 10.1287/trsc.1110.0400CrossRefGoogle Scholar
  11. 11.
    Dunbabin, M., Lang, B., Wood, B.: Vision-based docking using an autonomous surface vehicle. In: IEEE International Conference on Robotics and Automation, 2008. ICRA 2008, pp 26–32 (2008), 10.1109/ROBOT.2008.4543182Google Scholar
  12. 12.
    Ester, M., Kreigel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters. In: Proceedings of the Association for the Advancement of Artificial Intelligence (1996)Google Scholar
  13. 13.
    Fichetti, M., Gonzalez, J.J.S., Toth, P.: A branch and cut algorithm for the symmetric generalized traveling salesman problem. Oper. Res. 45, 378–394 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gini, M.L.: Multi-robot allocation of tasks with temporal and ordering constraints. In: Proceedings of the AAAI (2017)Google Scholar
  15. 15.
    Gombolay, M.C., Wilcox, R.J., Shah, J.A.: Fast scheduling of multi-robot teams with temporospatial constraints. In: Robotics: Science and Systems (2013)Google Scholar
  16. 16.
    Grocholsky, B., Keller, J., Kumar, V., Pappas, G.: Cooperative air and ground surveillance. IEEE Robot. Autom. Mag. 13(3), 16–25 (2006). 10.1109/MRA.2006.1678135CrossRefGoogle Scholar
  17. 17.
    Kahraman, C., Engin, O., Kaya, A., Ozturk, R.E.: Multiprocessor task scheduling in multistage hybrid flow-shops: a parallel greedy algorithm approach. Appl. Soft Comput. 10(4), 1293–1300 (2010).  https://doi.org/10.1016/j.asoc.2010.03.008. Optimisation Methods and Applications in Decision-Making ProcessesCrossRefGoogle Scholar
  18. 18.
    Kalwa, J.: The Grex-Project: coordination and control of cooperating heterogeneous unmanned systems in uncertain environments. In: OCEANS 2009-EUROPE, pp 1–9. IEEE (2009)Google Scholar
  19. 19.
    Kolisch, R.: Serial and parallel resource-constrained project scheduling revisited: Theory and computation European Journal of Operational Research (1996)Google Scholar
  20. 20.
    Korsah, G.A., Stentz, A., Dias, M.B., Fanaswala, I.: Optimal vehicle routing and scheduling with precedence constraints and location choice. In: International Conference on Robotics and Automation (2010)Google Scholar
  21. 21.
    Luo, L., Chakraborty, N., Sycara, K.: Distributed algorithms for multirobot task assignment with task deadline constraints. IEEE Trans. Autom. Sci. Eng. 12(3), 876–888 (2015)CrossRefGoogle Scholar
  22. 22.
    Martins, A., Almeida, J.M., Ferreira, H., Silva, H., Dias, N., Dias, A., Almeida, C., Silva, E.: Autonomous surface vehicle docking Manoevre with visual information. In: International Conference on Robotics and Automation (2007)Google Scholar
  23. 23.
    Mathew, N., Smith, S.L., Waslander, S.L.: Optimal path planning in cooperative heterogeneous multi-robot delivery systems. In: Workshop on the Algorithmic Foundations of Robotics (2014)Google Scholar
  24. 24.
    McIntire, M., Nunes, E., Gini, M.: Iterated multi-robot auctions for precedence-constrained task scheduling. In: Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems, pp. 1078–1086. International Foundation for Autonomous Agents and Multiagent Systems (2016)Google Scholar
  25. 25.
    Murphy, R.R., Steimle, E., Griffin, C., Cullins, C., Hall, M., Pratt, K.: Cooperative use of unmanned sea surface and micro aerial vehicles at hurricane wilma. J. Field Rob. 25(3), 164–180 (2008)CrossRefGoogle Scholar
  26. 26.
    Nanjanath, M., Gini, M.: Repeated auctions for robust task execution by a robot team. Robot. Auton. Syst. 58(7), 900–909 (2010)CrossRefGoogle Scholar
  27. 27.
    Silberholz, J., Golden, B.: The generalized traveling salesman problem: a new genetic algorithm approach. Extended Horizons: Advan. Comput. Optim. Decision Technol. 37, 165–181 (2007)zbMATHGoogle Scholar
  28. 28.
    Stokey, R., Allen, B., Austin, T., Goldsborough, R., Forrester, N., Purcell, M., von Alt, C.: Enabling technologies for remus docking: an integral component of an autonomous ocean-sampling network. IEEE J. Ocean. Eng. 26(4), 487–497 (2001)CrossRefGoogle Scholar
  29. 29.
    Sujit, P., Healey, A., Sousa, J.B.: AUV docking on a moving submarine using a K-R navigation function. In: International Conference on Intelligent Robots and Systems (2011)Google Scholar
  30. 30.
    Weaver, J.N., Frank, D.Z., Swartz, E.M., Arroyo, A.A.: UAV performing autonomous landing on USV utilizing the robot operating system. In: ASME Early Career Technical Symposium (2013)Google Scholar
  31. 31.
    Wenzel, K.E., Masselli, A., Zell, A.: Automatic take off, tracking and landing of a miniature uav on a moving carrier vehicle. J. Intell. Robot. Syst. 61(1-4), 221–238 (2011)CrossRefGoogle Scholar
  32. 32.
    Whitten, A.K., Choi, H.L., Johnson, L.B., How, J.P.: Decentralized task allocation with coupled constraints in complex missions. In: Proceedings of the 2011 American Control Conference.  https://doi.org/10.1109/ACC.2011.5990917  https://doi.org/10.1109/ACC.2011.5990917, pp 1642–1649 (2011)

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.Naval Surface Warfare CenterPanama City DivisionPanama CityUSA
  2. 2.Naval Undersea Warfare CenterNewport DivisionNewportUSA

Personalised recommendations