Advertisement

Survey of Multi-agent Communication Strategies for Information Exchange and Mission Control of Drone Deployments

  • G. Pantelimon
  • K. Tepe
  • R. Carriveau
  • S. Ahmed
Article
  • 106 Downloads

Abstract

Understanding how multiple drones can coordinate and communicate is essential for advancing multi-agent robotics. Multiple drone applications are growing with technology and have reached areas such as: farming, meteorology, pollution detection, and forest fire monitoring. The focus of this paper is to illustrate how current systems manage mission control and communication strategies for multi-agent drone deployments. The primary scope was to examine papers that provide promising experimental results and analyze popular communication hardware used. Principal results included the classification of two main mission control strategies: centralized and decentralized. In addition the two most popular formation strategies leader-follower and virtual structure were compared. Finally, successful experimental frameworks that were used for practical applications were introduced and classified. Most results were limited in number of agents or were in their initial experimental stages. The literature review revealed a need for a greater focus on overall robustness of multi-agent systems.

Keywords

Drone communications Multi-agent UAV Drone applications Centralized decentralized architectures Information exchange Mission control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Cho, A., Kim, J., Lee, S., Kee, C.: Wind estimation and airspeed calibration using a UAV with a single antenna GPS receiver and pitot tube. IEEE Trans. Aerosp. Electron. Syst. 47(1), 109–117 (2011)CrossRefGoogle Scholar
  2. 2.
    Caltabiano, D., Muscato, G., Orlando, A., Federico, C, Giudice, G., Guerrieri, S.: Architecture of a UAV for volcanic gas sampling. IEEE Conference on Emerging Technologies and Factory Auto- mation 1, 739–744 (2005)CrossRefGoogle Scholar
  3. 3.
    McGonigle, A.J.S., Aiuppa, A., Giudice, G., Tamburello, G., Hodson, A.J., Gurrieri, G.: Unmanned aerial vehicle measurements of volcanic carbon dioxide fluxes. Geophyshical Res. Lett. 35(6), 1–4 (2008)Google Scholar
  4. 4.
    Van den Kroonenberg, A., Martin, T., Buschmann, M., Bange, J., Vörsmann, P.: Measuring the wind vector using the autonomous mini aerial vehicle M 2 AV. J. Atmos. Ocean. Technol. 25(11), 1969–1982 (2008)CrossRefGoogle Scholar
  5. 5.
    Faical, B.S., Costa, F.G., Pessin, G., Ueyama, J., Freitas, H., Colombo, A., Fini, P.H., Villas, L., Osorio, F.S., Vargas, P.A., Braun, T.: The use of unmanned aerial vehicles and wireless sensor networks for spraying pesticides. J. Syst. Archit. 60(4), 393–404 (2014)CrossRefGoogle Scholar
  6. 6.
    Logan, M.J. et al.: Small UAV research and evolution in long endurance electric powered vehicles. In: American Institute of Aeronautics and Astronautics Conference and Exhibit, pp 1–7, Rohnert Park (2007)Google Scholar
  7. 7.
    Beni, G.: From swarm intelligence to swarm robotics. Swarm Robotics. Springer, Berlin (2005). Online ISBN:978-3-540-30552-1Google Scholar
  8. 8.
    Quaritsch, M., et al.: Collaborative microdrones: applications and research challenges. In: of The 2nd International Conference on Autonomic Computing and CommunicationSystems, Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, Turin (2008)Google Scholar
  9. 9.
    Purta, R., Nagrecha, S., Madey, G.: Multi-hop Communications in a Swarm of UAVs. In: Agent-Directed Simulation SymposiumSociety for Computer Simulation International, San Diego (2013)Google Scholar
  10. 10.
    Yuta, S., Premvuti, S.: Coordinating autonomous and centralized decision making to achieve cooperative behaviors between multiple mobile robots. In: Intelligent Robots and Systems, lEEE/RSJ International Conference, vol. 3, Raleigh (1992)Google Scholar
  11. 11.
    McLain, T.W., et al.: Cooperative control of UAV rendezvous. In: American Control Conference, vol. 3, Arlington (2001)Google Scholar
  12. 12.
    Acevedo, J.J. et al.: Decentralized strategy to ensure information propagation in area monitoring missions with a team of UAVs under limited communications. In: Unmanned Aircraft Systems (ICUAS), Grand Hyatt (2013)Google Scholar
  13. 13.
    Acevedo, J.J. et al.: One-to-one coordination algorithm for decentralized area partition in surveillance missions with a team of aerial robots. J. Intell. Robot. Syst. 74, 269–285 (2014)CrossRefGoogle Scholar
  14. 14.
    Saha, M., Pekka, I.: Multi-robot motion planning by incremental coordination. In: IEEE/RSJ International Conference Intelligent Robots and Systems (2006)Google Scholar
  15. 15.
    Kazanzides, P., Thienphrapa, P.: Centralized processing and distributed I/O for robot control. In: IEEE International Conference Technologies for Practical Robot Applications (2008)Google Scholar
  16. 16.
    Weiss, N., Norbert, J.: Towards local vision in centralized robot soccer leagues: A robust and flexible vision system also allowing varying degrees of robot autonomy. In: Proceedings of the FIRA World Congress (2004)Google Scholar
  17. 17.
    Borrelli, F., et al.: Collision-free UAV formation flight using decentralized optimization and invariant sets. In: Decision and Control IEEE Conference on, vol. 1 (2004)Google Scholar
  18. 18.
    Tanner, H., Christodoulakis, D.: Decentralized cooperative control of heterogeneous vehicle groups. Robot. Auton. Syst. 11, 811–823 (2007)CrossRefGoogle Scholar
  19. 19.
    Clare, A., Cummings, M.: Task-based interfaces for decentralized multiple unmanned vehicle control. In: Proceedings of AUVSI (2011)Google Scholar
  20. 20.
    Chen, X., Serrani, A., Ozbay, H.: Control of leader-follower formations of terrestrial UAVs. In: 42nd IEEE Conference Decision and Control, vol. 1 (2003)Google Scholar
  21. 21.
    Shao, J. et al.: Leader-following formation control of multiple mobile robots. In: Intelligent Control, IEEE International Symposium on, Mediterrean Conference on Control and Automation, Limassol (2005)Google Scholar
  22. 22.
    Standard: IEEE 802.11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. (2012 revision).  https://doi.org/10.1109/IEEESTD.2012.6178212. Accessed 5 April 2012
  23. 23.
    Standard: IEEE 802.15.4: Low-Rate Wireless Personal Area Networks 16 (2011)Google Scholar
  24. 24.
    Tan, K.N., Lewis, M.: Virtual structures for high-precision cooperative mobile robotic control. In: Intelligent Robots and Systems, IEEE/RSJ, vol. 1, Osaka (1996)Google Scholar
  25. 25.
    Askari, A., et al.: UAV formation control via the virtual structure approach. J. Aerosp. Eng. 28(1), 04014047 (2013)CrossRefGoogle Scholar
  26. 26.
    Wang, J. et al.: Robustness analysis of leader-follower consensus. J. Syst. Sci. Complex. 22(2), 186–206 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Hogg, R. et al.: Sensors and algorithms for small robot leader/follower behavior. In: Aerospace/Defense Sensing, Simulation, and Controls. International Society for Optics and Photonics (2001)Google Scholar
  28. 28.
    Mariottini, G. et al.: Leader-follower formations: Uncalibrated vision-based localization and control. In: IEEE International Conference on Robotics and Automation (2007)Google Scholar
  29. 29.
    Ren, W., Beard, R.: Decentralized scheme for spacecraft formation flying via the virtual structure approach. J. Guid. Control Dyn. 27(1), 73–82 (2004)CrossRefGoogle Scholar
  30. 30.
    Low, C., Quee, N.: A flexible virtual structure formation keeping control for fixed-wing UAVs. In: 9th IEEE International Conference on Control and Automation (ICCA) (2011)Google Scholar
  31. 31.
    Kowalczyk, W.: Multi-robot coordination. In: Proceedings of the Second International Workshop on Robot Motion and Control (2001)Google Scholar
  32. 32.
    Bürkle, A., Segor, F., Kollmann, M.: Towards Autonomous Micro UAV Swarms. J. Intell. Robot. Syst. 61(1), 339–353 (2011)CrossRefGoogle Scholar
  33. 33.
    Leuchter, S., Partmann, T., Berger, L., Blum, E.J., Schönbein, R.: Karlsruhe generic agile ground station. In: Beyerer, J. (ed.) Future Security. 2nd Security Research Conference, Fraunhofer Defense and Security Alliance, pp 159–162, Karlsruhe (2007)Google Scholar
  34. 34.
    Kushleyev, A., Mellinger, D., Powers, C., Kumar, V.: Towards a swarm of agile micro quadrotors. Auton. Robot. 35(4), 287–300 (2013)CrossRefGoogle Scholar
  35. 35.
    Vicon Motion Camera http://www.vicon.com/products/camera-systems Accessed 8 June 2015
  36. 36.
    MATLAB http://www.mathworks.com/products/matlab/ Accessed 8 June 2015
  37. 37.
    Dantu, K., et al.: Programming micro-aerial vehicle swarms with karma. In: The 9th ACM Conference on Embedded Networked Sensor Systems, Seattle (2011)Google Scholar
  38. 38.
    Jbullet http://jbullet.advel.cz/ Accessed 8 June 2015
  39. 39.
    Simbeeotic https://github.com/bryankate/simbeeotic/wiki Accessed 8 June 2015
  40. 40.
  41. 41.
  42. 42.
    Chao, H., Baumann, M., Jensen, A., Chen, Y., Cao, Y., Ren, W., McKee, M.: Band-reconfigurable multi-UAV-based cooperative remote sensing for real-time water management and distributed irrigation control. In: IFAC World Congress, Seoul (2008)Google Scholar
  43. 43.
    CR206 Datalogger https://www.campbellsci.ca/cr206 Accessed 8 June 2015
  44. 44.
    Schmickl, T. et al.: CoCoRo–The Self-Aware Underwater Swarm. In: 2011 Fifth IEEE Conference Self-Adaptive and Self-Organizing Systems Workshops (SASOW), Ann Arbor (2011)Google Scholar
  45. 45.
    Akyildiz, I.F., Pompili, D., Melodia, T.: Challenges for efficient communication in underwater acoustic sensor networks. ACM SIGBED Review, Special issue on embedded sensor networks and wireless computing. 1(2), 3–8 (2004)Google Scholar
  46. 46.
    Yun, B., Chen, B.M., Lum, K.Y., Lee, T.H.: Design and implementation of a leader-follower cooperative control system for unmanned helicopters. J. Control Theory Appl. 8(1), 61–68 (2010)CrossRefGoogle Scholar
  47. 47.
    Freewave Modem http://www.freewave.com/products.aspx Accessed 8 June 2015
  48. 48.
    Avan den Broek, T., Huijberts, H., van de Wouw, N., Kostic, D., Nijmeijer, H.: A virtual structure approach to formation control of unicycle mobile robots using mutual coupling. Int. J. Control 84(11), 1886–1902 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    E-puck Robots http://www.e-puck.org/ Accessed June 8 2015
  50. 50.
    Li, N., Liu, H.: Multiple UAVs Formation Flight Experiments Using Virtual Structure and Motion Synchronization. In: The AIAA Guidance, Navigation, and Control Conference, Chicago (2009)Google Scholar
  51. 51.
    Gumstix Computers https://www.gumstix.com/ Accessed 8 2015
  52. 52.
    Osterloh, C., Thilo, P., Erik, M.: MONSUN II: A small and inexpensive AUV for underwater swarms. In: Robotics; ROBOTIK 2012, 7th German Conference on VDE, Munich (2012)Google Scholar
  53. 53.
    BeagleBone http://beagleboard.org/ Accessed 8 June 2015
  54. 54.
    Varela, G., Caamamo, P., Orjales, F., Deibe, A., López-Peña, F., Duro, R.J.: Swarm intelligence based approach for real time UAV team coordination in search operations. In: Nature and Biologically Inspired Computing (NaBIC), Mexico (2011)Google Scholar
  55. 55.
    Olivieri, B., Endler, M.: An ubiquitous based approach for Movement Coordination of Swarms of Unmanned Aerial Vehicles using mobile networks. In: VI SimposioBrasileiro de ComputaçãoUbiqua e Pervasiva (2014)Google Scholar
  56. 56.
    David, L., Vasconcelos, R., Alves, L., André, R., Endler, M.: A DDS-based middleware for scalable tracking, communication and collaboration of mobile nodes. J. Internet Serv. Appl. 4(1), 1–15 (2013)CrossRefGoogle Scholar
  57. 57.
    Costa, F.G. et al.: The use of unmanned aerial vehicles and wireless sensor network in agricultural applications. In: Geoscience and Remote Sensing Symposium (IGARSS), Munich (2012)Google Scholar
  58. 58.
  59. 59.
    standard, E I A: RS-232-C: Interface between Data Terminal Equipment and Data Communication Equipment Employing Serial Binary Data Interchange. Electronic Industries Association Engineering Dept, Washington (1969)Google Scholar
  60. 60.
    Lee, J.-S., Su, Y.-W., Shen, C.-C.: A Comparative Study of Wireless Protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. In: The 33rd Annual Conference of the IEEE Industrial Electronics Society (IECON), Taipei (2007)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • G. Pantelimon
    • 1
  • K. Tepe
    • 1
  • R. Carriveau
    • 2
  • S. Ahmed
    • 1
  1. 1.Wireless Communication and Information Processing Research Laboratory Ed Lumley Center for Engineering InnovationUniversity of WindsorWindsorCanada
  2. 2.Turbulence and Energy Laboratory, Environmental Energy Institute Ed Lumley Center for Engineering InnovationUniversity of WindsorWindsorCanada

Personalised recommendations