(2017) ROS navigation stack. http://wiki.ros.org/navigation
Aguiar, A P, Hespanha, J P: Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty. IEEE Trans. Autom. Control 52(8), 1362–1379 (2007). https://doi.org/10.1109/TAC.2007.902731
MathSciNet
Article
MATH
Google Scholar
Arantes, M d S, Arantes, J d S, Toledo, C F M, Williams, BC: A hybrid multi-population genetic algorithm for UAV path planning. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference, pp 853–860. ACM (2016)
Bavle, H, Sanchez-Lopez, J L, Rodriguez-Ramos, A, Sampedro, C, Campoy, P: A flight altitude estimator for multirotor UAVS in dynamic and unstructured indoor environments. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp 1044–1051 (2017), https://doi.org/10.1109/ICUAS.2017.7991467
Bohlin, R, Kavraki, L E: Path planning using lazy prm. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), vol. 1, pp 521–528 (2000), https://doi.org/10.1109/ROBOT.2000.844107
Chen, YB, Luo, Gc, Mei, Ys, Yu, Jq, Su, Xl: UAV path planning using artificial potential field method updated by optimal control theory. Int. J. Syst. Sci. 47(6), 1407–1420 (2016)
MathSciNet
Article
MATH
Google Scholar
Dechter, R, Pearl, J: Generalized best-first search strategies and the optimality of a*. J. ACM 32(3), 505–536 (1985). https://doi.org/10.1145/3828.3830
MathSciNet
Article
MATH
Google Scholar
Hart, P E, Nilsson, N J, Raphael, B: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)
Article
Google Scholar
Holland, J H: Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press (1992)
Hossain, M A, Ferdous, I: Autonomous robot path planning in dynamic environment using a new optimization technique inspired by bacterial foraging technique. Robot. Auton. Syst. 64, 137–141 (2015)
Article
Google Scholar
Hwang, Y K, Ahuja, N: A potential field approach to path planning. IEEE Trans. Robot. Autom. 8(1), 23–32 (1992). https://doi.org/10.1109/70.127236
Article
Google Scholar
Kassim, A A, Kumar, B V: A neural network architecture for path planning. In: International Joint Conference on Neural Networks, 1992. IJCNN, vol. 2, pp 787–792. IEEE (1992)
Kavraki, L E, Svestka, P, Latombe, J C, Overmars, M H: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996). https://doi.org/10.1109/70.508439
Article
Google Scholar
Kennedy, J: Particle swarm optimization. In: Encyclopedia of machine learning, pp 760–766. Springer (2011)
Lacasa, L, Luque, B, Ballesteros, F, Luque, J, Nuno, J C: From time series to complex networks: the visibility graph. Proc. Natl. Acad. Sci. 105(13), 4972–4975 (2008)
MathSciNet
Article
MATH
Google Scholar
LaValle, SM: Rapidly-Exploring Random Trees: a New Tool for Path Planning. Citeseer (1998)
Lin, Y, Saripalli, S: Sampling-based path planning for UAV collision avoidance. IEEE Trans. Intell. Transp. Syst. (2017)
Liu, S, Atanasov, N, Mohta, K, Kumar, V: Search-based motion planning for quadrotors using linear quadratic minimum time control. arXiv:170905401 (2017)
Molina, M, Diaz-Moreno, A, Palacios, D, Suarez-Fernandez, R A, Sanchez-Lopez, J L, Sampedro, C, Bavle, H, Campoy, P: Specifying complex missions for aerial robotics in dynamic environments. In: International Micro Air Vehicle Conference and Competition, IMAV, p 2016, Beijing (2016)
Molina, M, Suarez-Fernandez, R A, Sampedro, C, Sanchez-Lopez, J L, Campoy, P: Tml: a language to specify aerial robotic missions for the framework aerostack. Int. J. Intell. Comput. Cybern. 10(4), 491–512 (2017). https://doi.org/10.1108/IJICC-03-2017-0025
Article
Google Scholar
Narayanan, V, Phillips, M, Likhachev, M: Anytime safe interval path planning for dynamic environments. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 4708–4715. IEEE (2012)
Nieuwenhuisen, M, Droeschel, D, Beul, M, Behnke, S: Autonomous navigation for micro aerial vehicles in complex gnss-denied environments. J. Intell. Robot. Syst. 84(1–4), 199–216 (2016)
Article
Google Scholar
Olivares-Mendez, M, Kannan, S, Voos, H: Vision based fuzzy control autonomous landing with UAVS: from V-REP to real experiments. In: 2015 23th Mediterranean Conference on Control and Automation (MED), pp 14–21 (2015), https://doi.org/10.1109/MED.2015.7158723
Pestana, J, Mellado-Bataller, I, Sanchez-Lopez, J L, Fu, C, Mondragón, I F, Campoy, P: A general purpose configurable controller for indoors and outdoors gps-denied navigation for multirotor unmanned aerial vehicles. J. Intell. Robot. Syst. 73(1), 387–400 (2014). https://doi.org/10.1007/s10846-013-9953-0
Article
Google Scholar
Pestana, J, Sanchez-Lopez, J L, de la Puente, P, Carrio, A, Campoy, P: A vision-based quadrotor swarm for the participation in the 2013 international micro air vehicle competition. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp 617–622 (2014), https://doi.org/10.1109/ICUAS.2014.6842305
Pestana, J, Collumeau, J F, Suarez-Fernandez, R, Campoy, P, Molina, M: A vision based aerial robot solution for the mission 7 of the international aerial robotics competition. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS), pp 1391–1400 (2015), https://doi.org/10.1109/ICUAS.2015.7152435
Pestana, J, Sanchez-Lopez, J L, de la Puente, P, Carrio, A, Campoy, P: A vision-based quadrotor multi-robot solution for the indoor autonomy challenge of the 2013 international micro air vehicle competition. J. Intell. Robot. Syst. 84(1), 601–620 (2016). https://doi.org/10.1007/s10846-015-0304-1
Article
Google Scholar
Quigley, M, Conley, K, Gerkey, B, Faust, J, Foote, T, Leibs, J, Wheeler, R, Ng, A Y: Ros: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3, p 5 (2009)
Richter, C, Bry, A, Roy, N: Polynomial Trajectory Planning for Aggressive Quadrotor Flight in Dense Indoor Environments, pp 649–666. Springer International Publishing, Cham (2016)
Google Scholar
Rohmer, E, Singh, S P N, Freese, M: V-rep: a versatile and scalable robot simulation framework. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 1321–1326 (2013), https://doi.org/10.1109/IROS.2013.6696520
Sampedro, C, Bavle, H, Sanchez-Lopez, J L, Suárez Fernández, R A, Rodríguez-Ramos, A, Molina, M, Campoy, P: A flexible and dynamic mission planning architecture for UAV swarm coordination. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp 355–363 (2016), https://doi.org/10.1109/ICUAS.2016.7502669
Sanchez-Lopez, J L, Pestana, J, de la Puente, P, Suarez-Fernandez, R, Campoy, P: A system for the design and development of vision-based multi-robot quadrotor swarms. In: International Conference on Unmanned Aircraft Systems (ICUAS), vol. 2014, pp 640–648 (2014), https://doi.org/10.1109/ICUAS.2014.6842308
Sanchez-Lopez, J L, Pestana, J, de la Puente, P, Campoy, P: A reliable open-source system architecture for the fast designing and prototyping of autonomous multi-UAV systems: simulation and experimentation. J. Intell. Robot. Syst. 84(1), 779–797 (2016). https://doi.org/10.1007/s10846-015-0288-x
Article
Google Scholar
Sanchez-Lopez, J L, Suárez Fernández, R A, Bavle, H, Sampedro, C, Molina, M, Pestana, J, Campoy, P: Aerostack: an architecture and open-source software framework for aerial robotics. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp 332–341 (2016), https://doi.org/10.1109/ICUAS.2016.7502591
Sanchez-Lopez, J L, Arellano-Quintana, V, Tognon, M, Campoy, P, Franchi, A: Visual marker based multi-sensor fusion state estimation. In: Proceedings of the 20th IFAC World Congress (2017)
Sanchez-Lopez, J L, Molina, M, Bavle, H, Sampedro, C, Suárez Fernández, R A, Campoy, P: A multi-layered component-based approach for the development of aerial robotic systems: the aerostack framework. J. Intell. Robot. Syst. https://doi.org/10.1007/s10846-017-0551-4 (2017)
Sanchez-Lopez, J L, Pestana, J, Campoy, P: A robust real-time path planner for the collision-free navigation of multirotor aerial robots in dynamic environments. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp 316–325. https://doi.org/10.1109/ICUAS.2017.7991354 (2017)
Song, G, Miller, S, Amato, N M: Customizing prm roadmaps at query time. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), vol 2., pp. 1500–1505 https://doi.org/10.1109/ROBOT.2001.932823 (2001)
Stentz A: Optimal and efficient path planning for partially-known environments. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation. Proceedings, vol. 4, pp 3310–3317 (1994), https://doi.org/10.1109/ROBOT.1994.351061
Suárez Fernández, R A, Sanchez-Lopez, J L, Sampedro, C, Bavle, H, Molina, M, Campoy, P: Natural user interfaces for human-drone multi-modal interaction. In: International Conference on Unmanned Aircraft Systems (ICUAS), vol. 2016, pp 1013–1022 (2016), https://doi.org/10.1109/ICUAS.2016.7502665
Tisdale, J, Kim, Z, Hedrick, J K: Autonomous UAV path planning and estimation. IEEE Robot. Autom. Mag. 16(2) (2009)
Wurm, K M, Hornung, A, Bennewitz, M, Stachniss, C, Burgard, W: Octomap: A probabilistic, flexible, and compact 3d map representation for robotic systems. In: Proceedings of the ICRA 2010 Workshop on Best Practice in 3D Perception and Modeling for Mobile Manipulation, vol 2 (2010)
Yan, F, Liu, Y S, Xiao, J Z: Path planning in complex 3d environments using a probabilistic roadmap method. Int. J. Autom. Comput. 10(6), 525–533 (2013)
Article
Google Scholar
Yang, L, Qi, J, Song, D, Xiao, J, Han, J, Xia, Y: Survey of robot 3d path planning algorithms. J. Control Sci. Eng. 2006, 5 (2016)
Yao, P, Wang, H, Liu, C: 3-d dynamic path planning for UAV based on interfered fluid flow. In: Guidance, Navigation and Control Conference (CGNCC), IEEE Chinese, pp 997–1002. IEEE (2014)
Yue, R, Xiao, J, Wang, S, Joseph, S L: Modeling and path planning of the city-climber robot part ii: 3d path planning using mixed integer linear programming. In: 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp 2391–2396. IEEE (2009)