Advertisement

Applying Frontier Cells Based Exploration and Lazy Theta* Path Planning over Single Grid-Based World Representation for Autonomous Inspection of Large 3D Structures with an UAS

  • Margarida Faria
  • Ivan Maza
  • Antidio Viguria
Article

Abstract

Aerial robots are a promising platform to perform autonomous inspection of infrastructures. For this application, the world is a large and unknown space, requiring light data structures to store its representation while performing autonomous exploration and path planning for obstacle avoidance. In this paper, we combine frontier cells based exploration with the Lazy Theta* path planning algorithm over the same light sparse grid—the octree implementation of octomap. Test-driven development has been adopted for the software implementation and the subsequent automated testing process. These tests provided insight into the amount of iterations needed to generate a path with different voxel configurations. The results for synthetic and real datasets are analyzed having as baseline a regular grid with the same resolution as the maximum resolution of the octree. The number of iterations needed to find frontier cells for exploration was smaller in all cases by, at least, one order of magnitude. For the Lazy Theta* algorithm there was a reduction in the number of iterations needed to find the solution in 75% of the cases. These reductions can be explained both by the existent grouping of regions with the same status and by the ability to confine inspection to the known voxels of the octree.

Keywords

Structure inspection UAS applications Path planning Autonomous exploration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Hornung, A., et al.: Octomap [Online; Accessed 28 Sep 2017]Google Scholar
  2. 2.
    Faria, M., Maza, I., Viguria, A.: Analysis of data structures and exploration techniques applied to large 3D marine structures using UAS. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1277–1284 (2017)Google Scholar
  3. 3.
    Perez-grau, F.J., Caballero, F., Ragel, R., Viguria, A., Ollero, A.: An architecture for robust UAV navigation in GPS-denied areas. J. Field Rob. (JFR), Special Issue on High Speed Vision-Based Autonomous UAVs (2017)Google Scholar
  4. 4.
    Hornus, S., Devillers, O., Jamin, C.: dD triangulations. In: CGAL User and Reference Manual. CGAL Editorial Board, 4.9 edition (2016)Google Scholar
  5. 5.
    Schøler, F., la Cour-harbo, A., Bisgaard, M.: Generating approximative minimum length paths in 3D for UAVs. In: 2012 IEEE Intelligent Vehicles Symposium, Alcala de Henares, pp. 229–233.  https://doi.org/10.1109/IVS.2012.6232120 (2012)
  6. 6.
    Omar, R.: Path planning for unmanned aerial vehicles using visibility line-based methods. Thesis submitted for the degree of Doctor of Philosophy at the University of Leicester by Department of Engineering Visibility Line-Based Method (2011)Google Scholar
  7. 7.
    LaValle, S.M.: Planning algorithms. Planning Algorithms 9780521862059:1–826 (2006)Google Scholar
  8. 8.
    Greß, A., Klein, R.: Efficient representation and extraction of 2-manifold isosurfaces using kd-trees. Graph. Model. 66(6), 370–397 (2004)CrossRefGoogle Scholar
  9. 9.
    Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Auton. Robot. 34(3), 189–206 (2013)CrossRefGoogle Scholar
  10. 10.
    Rusu, R.B., Cousins, S.: 3D is here: Point Cloud Library (PCL). In: IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9–13 (2011)Google Scholar
  11. 11.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. Intelligent Robotics and Autonomous Agents. MIT Press, Cambridge (2005)zbMATHGoogle Scholar
  12. 12.
    Yamauchi, B.: A frontier-based approach for autonomous exploration. In: Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA’97. ‘Towards New Computational Principles for Robotics and Automation’, pp. 146–151. IEEE Comput. Soc. Press (1997)Google Scholar
  13. 13.
    Fraundorfer, F., Heng, L., Honegger, D., Lee, G.H., Meier, L., Tanskanen, P., Pollefeys, M.: Vision-based autonomous mapping and exploration using a quadrotor MAV. In: IEEE International Conference on Intelligent Robots and Systems, pp. 4557–4564 (2012)Google Scholar
  14. 14.
    Romero, L., Morales, E., Sucar, E.: A robust exploration and navigation approach for indoor mobile robots merging local and global strategies. In: Advances in Artificial Intelligence: International Joint Conference 7th Ibero-American Conference on AI 15th Brazilian Symposium on AI IBERAMIA-SBIA 2000 Atibaia, SP, Brazil, November 19–22, 2000 Proceedings, pp. 389–398 (2000)Google Scholar
  15. 15.
    Dornhege, C., Kleiner, A.: A frontier-void-based approach for autonomous exploration in 3d. In: 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, pp. 351–356. IEEE (2011)Google Scholar
  16. 16.
    Paul, G., Webb, S., Liu, D., Dissanayake, G.: Autonomous robot manipulator-based exploration and mapping system for bridge maintenance. Robot. Auton. Syst. 59(7–8), 543–554 (2011)CrossRefGoogle Scholar
  17. 17.
    Potthast, C., Sukhatme, G.S.: A probabilistic framework for next best view estimation in a cluttered environment. J. Vis. Commun. Image Represent. 25(1), 148–164 (2014)CrossRefGoogle Scholar
  18. 18.
    Burgard, W., Moors, M., Stachniss, C., Schneider, F.E.: Coordinated multi-robot exploration. IEEE Trans. Robot. 21(3), 376–386 (2005)CrossRefGoogle Scholar
  19. 19.
    Choset, H., Nagatani, K.: Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization. IEEE Trans. Robot. Autom. 17(2), 125–137 (2001)CrossRefGoogle Scholar
  20. 20.
    Freda, L., Oriolo, G., Vecchioli, F.: Sensor-based exploration for general robotic systems. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, pp. 2157–2164 (2008)Google Scholar
  21. 21.
    Shen, S., Michael, N., Kumar, V.: Autonomous multi-floor indoor navigation with a computationally constrained MAV. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 20–25 (2011)Google Scholar
  22. 22.
    Latombe, J.C.: Robot Motion Planning. The Springer International Series in Engineering and Computer Science. Springer US (1991)Google Scholar
  23. 23.
    Choset, H.M.: Principles of Robot Motion: Theory, Algorithms, and Implementation. A Bradford book. Prentice Hall of India (2005)Google Scholar
  24. 24.
    Tin, C.: Robust multi-UAV planning in dynamic and uncertain environments. Work (2004)Google Scholar
  25. 25.
    Schøler, F., la Cour-Harbo, A., Bisgaard, M.: Generating approximative minimum length paths in 3d for uavs. In: 2012 IEEE Intelligent Vehicles Symposium, pp. 229–233 (2012)Google Scholar
  26. 26.
    LaValle, S.M.: Rapidly-exploring random trees: a new tool for path planning. Technical Report 98-11, Computer Science Dept., Iowa State University, Oct. 1998 (1998)Google Scholar
  27. 27.
    LaValle, S.M., Kuffner, J.J.: Rapidly-exploring random trees: progress and prospects. In: Proceedings Workshop on the Algorithmic Foundations of Robotics (2000)Google Scholar
  28. 28.
    Bohlin, R., Kavraki, L.E.: Path planning using lazy prm. In: IEEE International Conference on Robotics and Automation, 2000. Proceedings. ICRA’00, vol. 1, pp. 521–528. IEEE (2000)Google Scholar
  29. 29.
    Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30 (7), 846–894 (2011)CrossRefzbMATHGoogle Scholar
  30. 30.
    Kuffner, J.J., LaValle, S.M.: Rrt-connect: an efficient approach to single-query path planning. In: IEEE International Conference on Robotics and Automation, 2000. Proceedings. ICRA’00, vol. 2, pp. 995–1001. IEEE (2000)Google Scholar
  31. 31.
    Oleynikova, H., Burri, M., Taylor, Z., Nieto, J., Siegwart, R., Galceran, E.: Continuous-time trajectory optimization for online uav replanning. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 5332–5339 (2016)Google Scholar
  32. 32.
    Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)CrossRefGoogle Scholar
  33. 33.
    Nash, A., Daniel, K., Koenig, S., Ariel, F.: Theta*: any-angle path planning on grids. In: AAAI, pp. 1177–1183 (2007)Google Scholar
  34. 34.
    Carsten, J., Ferguson, D., Stentz, A.: 3d field d: improved path planning and replanning in three dimensions. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3381–3386. IEEE (2006)Google Scholar
  35. 35.
    Nash, A., Koenig, S.: Lazy Theta*: any-angle path planning and path length analysis in 3D (2010)Google Scholar
  36. 36.
    Pivtoraiko, M., Mellinger, D., Kumar, V.: Incremental micro-uav motion replanning for exploring unknown environments. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 2452–2458. IEEE (2013)Google Scholar
  37. 37.
    Yang, L., Qi, J., Xiao, J., Yong, X.: A literature review of UAV 3D path planning. In: Proceedings of the World Congress on Intelligent Control and Automation (WCICA), pp. 2376–2381 (2015)Google Scholar
  38. 38.
    Kroumov, V., Yu, J., Shibayama, K.: 3D path planning for mobile robots using simulated annealing neural network. Int. J. Innov. Comput. Inf. Control 6(7), 2885–2899 (2010)Google Scholar
  39. 39.
    Pehlivanoglu, Y.V., Baysal, O., Hacioglu, A.: Path planning for autonomous uav via vibrational genetic algorithm. Aircr. Eng. Aerosp. Technol. 79(4), 352–359 (2007)CrossRefGoogle Scholar
  40. 40.
    Masehian, E., Habibi, G.: Robot Path Planning in 3D Space Using Binary Integer Programming. Int. J. Mech. Syst. Sci. Eng. 1(5), 1255–1260 (2007)Google Scholar
  41. 41.
    Masehian, E, Amin-Naseri, M.R.: A voronoi diagram-visibility graph-potencial field compound algorith for robot path planning. J. Robot. Syst. 21(6), 275–300 (2004)CrossRefGoogle Scholar
  42. 42.
    Liu, L, Zhang, S: Voronoi diagram and gis-based 3d path planning. In: 2009 17th International Conference on Geoinformatics, pp. 1–5 (2009)Google Scholar
  43. 43.
    Oleynikova, H, Taylor, Z, Siegwart, R, Nieto, J: Safe local exploration for replanning in cluttered unknown environments for micro-aerial vehicles. arXiv (2017)Google Scholar
  44. 44.
    Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source Robot Operating System. In: ICRA Workshop on Open Source Software (2009)Google Scholar
  45. 45.
    GRVC-CATEC team: European robotics challenge. [Online; accessed 26 Sep 2017] (2017)Google Scholar
  46. 46.
    RobMoSys: Composable Models and Software for Robotic Systems. User stories [Online; accessed 12 Feb 2018]Google Scholar
  47. 47.
    RobMoSys: Composable Models and Software for Robotic Systems. General purpose modeling languages and dynamic-realtime-embedded domains. [Online; accessed 12 Feb 2018]Google Scholar
  48. 48.
    Open source ros wiki: Cis. [Online; accessed 12 Feb 2018]Google Scholar
  49. 49.
    Foote, T., Saito, I., Reed, P.R., Adams, J., Weidhards, F.: Cis. [Online; accessed 12 Feb 2018]Google Scholar
  50. 50.
    Google: Google c+ + testing framework, 2017. [Online; Accessed 28 Sep 2007]Google Scholar
  51. 51.
    Shen, S., Michael, N., Kumar, V.: Stochastic differential equation-based exploration algorithm for autonomous indoor 3D exploration with a micro-aerial vehicle. Int. J. Robot. Res. 31(12), 1431–1444 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Advanced Aerospace TechnologiesLa RinconadaSpain
  2. 2.Robotics, Vision and Control GroupUniversity of SevilleSevillaSpain

Personalised recommendations