Abstract
The application of robots as a tool to explore underwater environments has increased in the last decade. Underwater tasks such as inspection, maintenance, and monitoring can be automatized by robots. The understanding of the underwater environments and the object recognition are required features that are becoming a critical issue for these systems. On this work, a method to provide a semantic mapping on the underwater environment is provided. This novel system is independent of the water turbidity and uses acoustic images acquired by Forward-Looking Sonar (FLS). The proposed method efficiently segments and classifies the structures in the scene using geometric information of the recognized objects. Therefore, a semantic map of the scene is created, which allows the robot to describe its environment according to high-level semantic features. Finally, the proposal is evaluated in a real dataset acquired by an underwater vehicle in a marina area. Experimental results demonstrate the robustness and accuracy of the method described in this paper.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Botelho, S., Drews, P. Jr., Figueiredo, M.S., Rocha, C., Oliveira, G.L.: Appearance-based odometry and mapping with feature descriptors for underwater robots. J. Braz. Comput. Soc. 15, 47–54 (2009)
Bradski, G.: The OpenCV library. Dr. Dobb’s J. Softw. Tools Prof. Prog. 25 (11), 120–123 (2000). ISSN: 1044–789X, http://www.drdobbs.com/open-source/the-opencv-library/184404319
Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)
Cho, H., Pyo, J., Gu, J., Jeo, H., Yu, S.C.: Experimental results of rapid underwater object search based on forward-looking imaging sonar. In: Underwater Technology (UT), 2015 IEEE, pp 1–5 (2015). https://doi.org/10.1109/UT.2015.7108235
Galceran, E., Djapic, V., Carreras, M., Williams, D.P.: A real-time underwater object detection algorithm for multi-beam forward looking sonar. Navigation, Guidance and Control of Underwater Vehicles (NGCUV) 3, 306–311 (2012)
Guo, J., Cheng, S.W., Liu, T.C.: Auv obstacle avoidance and navigation using image sequences of a sector scanning sonar. In: Proceedings of the 1998 International Symposium on Underwater Technology, 1998, pp 223–227 (1998). https://doi.org/10.1109/UT.1998.670096
Guth, F., Silveira, L., Botelho, S.S., Drews, P. Jr., Ballester, P.: Underwater slam: challenges, state of the art, algorithms and a new biologically-inspired approach. In: IEEE 5th RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, pp 1–6 (2014)
Hurtós, N.V.: Forward-Looking Sonar Mosaicing for Underwater Environments. Ph.D. Thesis, Universitat de Girona (2014)
Kim, K., Neretti, N., Intrator, N.: Mosaicing of acoustic camera images. IEE Proceedings Radar, Sonar and Navigation 152(4), 263–270 (2005). https://doi.org/10.1049/ip-rsn:20045015
Kostavelis, I., Gasteratos, A.: Semantic mapping for mobile robotics tasks: a survey. Robot. Auton. Syst. 66, 86–103 (2015)
Lu, Y., Sang, E.: Underwater target’s size/shape dynamic analysis for fast target recognition using sonar images. In: Proceedings of the 1998 International Symposium on Underwater Technology, 1998, pp 172–175 (1998). https://doi.org/10.1109/UT.1998.670085
Machado, M., Zaffari, G., Ballester, P., Drews, P. Jr., Botelho, S.: A Topological Descriptor of Forward Looking Sonar Images for Navigation and Mapping, pp 120–134. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-47247-8_8
Negahdaripour, S., Firoozfam, P., Sabzmeydani, P.: On processing and registration of forward-scan acoustic video imagery. In: Proceedings the 2nd Canadian Conference on Computer and Robot Vision, 2005, pp 452–459 (2005). https://doi.org/10.1109/CRV.2005.57
Reed, S., Petillot, Y., Bell, J.: An automatic approach to the detection and extraction of mine features in sidescan sonar. IEEE J. Ocean. Eng. 28(1), 90–105 (2003)
Ribas, D., Ridao, P., Tardós, J.D., Neira, J.: Underwater slam in man-made structured environments. J. Field Rob. 25(11-12), 898–921 (2008). https://doi.org/10.1002/rob.20249
Santos, M.M., Drews, P. Jr., Nunez, P., Botelho, S.S.C.: Semantic mapping on underwater environment using sonar data. In: IEEE 13th Latin American Robotics Symposium LARS, pp 1–6 (2016)
Silveira, L., Guth, F., Drews, P., Ballester, P., Machado, M., Codevilla, F., Duarte, N., Botelho, S.: An open-source bio-inspired solution to underwater SLAM. In: IFAC Workshop on Navigation, Guidance and Control of Underwater Vehicles NGCUV (2015)
Thrun, S.: Robotic mapping: a survey. In: Exploring Artificial Intelligence in the New Millennium, pp 1–35 (2003)
Acknowledgments
We thank to CNPq, CAPES, FAPERGS, Oil Brazilian Agency, PRH-27 FURG-ANP/MCT and IBP – Brazillian Petroleum, Gas and Biofuels Institute to support this research. This paper is a contribution of the INCT-Mar COI funded by CNPq Grant Number 610012/2011-8 and CAPES-DGPU project BS-NAVLOC (CAPES no 321/15, DGPU 7523/14-9, MEC project PHBP14/00083): Brazil-Spain cooperation on navigation and localization for autonomous robots on terrestrial and underwater environments.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
dos Santos, M., Drews, P., Núñez, P. et al. Object Recognition and Semantic Mapping for Underwater Vehicles Using Sonar Data. J Intell Robot Syst 91, 279–289 (2018). https://doi.org/10.1007/s10846-017-0721-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-017-0721-4