Advertisement

Dual-eyes Vision-based Docking System for Autonomous Underwater Vehicle: an Approach and Experiments

  • Myo Myint
  • Kenta Yonemori
  • Khin Nwe Lwin
  • Akira Yanou
  • Mamoru Minami
Article

Abstract

A critical challenge for autonomous underwater vehicles (AUVs) is the docking operation for applications such as sleeping under the mother ship, recharging batteries, transferring data, and new mission downloading. The final stage of docking at a unidirectional docking station requires the AUV to approach while keeping the pose (position and orientation) of the vehicle within an allowable range. The appropriate pose therefore demands a sensor unit and a control system that have high accuracy and robustness against disturbances existing in a real-world underwater environment. This paper presents a vision-based AUV docking system consisting of a 3D model-based matching method and Real-time Multi-step Genetic Algorithm (GA) for real-time estimation of the robot’s relative pose. Experiments using a remotely operated vehicle (ROV) with dual-eye cameras and a separate 3D marker were conducted in a small indoor pool. The experimental results confirmed that the proposed system is able to provide high homing accuracy and robustness against disturbances that influence not only the captured camera images but also the movement of the vehicle. A successful docking operation using stereo vision that is new and novel to the underwater vehicle environment was achieved and thus proved the effectiveness of the proposed system for AUV.

Keywords

Visual servoing Genetic algorithm Underwater vehicle Underwater docking Stereo vision 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to thank the Kowa cooperation for their collaboration in the experiments.

References

  1. 1.
    Balasuriya, B.A.A.P., Takai, M., Lam, W.C., Ura, T., Kuroda, Y.: Vision based autonomous underwater vehicle navigation: underwater cable tracking. Proc. MTS/IEEE OCEANS Conf. 2, 1418–1424 (1997)CrossRefGoogle Scholar
  2. 2.
    Son-Cheol, Y., Ura, T., Fujii, T., Kondo, H.: Navigation of autonomous underwater vehicles based on artificial underwater landmarks. Proc. MTS/IEEE OCEANS Conf. 1, 409–416 (2001)Google Scholar
  3. 3.
    Cowen, S., Briest, S., Dombrowski, J.: Underwater docking of autonomous undersea vehicle using optical terminal guidance. Proc. MTS/IEEE OCEANS Conf. 2, 1143–1147 (1997)CrossRefGoogle Scholar
  4. 4.
    Teo, K., Goh, B., Chai, O.K.: Fuzzy docking guidance using augmented navigation system on an AUV. IEEE J. Ocean. Eng. 40(2), 349–361 (2015)CrossRefGoogle Scholar
  5. 5.
    Feezor, M.D., Yates Sorrell, F., Blankinship, P.R., Bellingham, J.G.: Autonomous underwater vehicle Homing/Docking via electromagnetic guidance. IEEE J. Ocean. Eng. 26(4), 515–521 (2001)CrossRefGoogle Scholar
  6. 6.
    McEwen, R.S., Hobson, B.W., McBride, L., Bellingham, J.G.: Docking control system for a 54-cm-diameter (21-in) AUV. IEEE J. Ocean. Eng. 33(4), 550–562 (2008)CrossRefGoogle Scholar
  7. 7.
    Teo, K., An, E., Beaujean, P.-P.J.: A robust fuzzy autonomous underwater vehicle (AUV) docking approach for unknown current disturbances. IEEE J. Ocean. Eng. 37(2), 143–155 (2012)CrossRefGoogle Scholar
  8. 8.
    Negre, A., Pradalier, C., Dunbabin, M.: Robust vision-based underwater homing using self similar landmarks. J Field Robot., Wiley-Blackwell, Special Issue on Field and Service Robot. 25(6-7), 360–377 (2008)MATHGoogle Scholar
  9. 9.
    Park, J.-Y., Jun, B.-H., Lee, P.-M., Oh, J.: Experiments on vision guided docking of an autonomous underwater vehicle using one camera. IEEE J. Ocean. Eng. 36(1), 48–61 (2009)CrossRefGoogle Scholar
  10. 10.
    Palomeras, N., Ridao, P., Ribas, D., Vallicrosa, G.: Autonomous i-AUV docking for fixed-base manipulation. Proc. Int. Federation Autom. Control 47(3), 12160–12165 (2014)Google Scholar
  11. 11.
    Foresti, G.L., Gentili, S., Zampato, M.: A vision-based system for autonomous underwater vehicle navigation. Proc. MTS/IEEE OCEANS Conf. 1, 195–199 (1998)Google Scholar
  12. 12.
    Ura, T., Kurimoto, Y., Kondo, H., Nose, Y., Sakamaki, T., Kuroda, Y.: Observation behavior of an AUV for ship wreck investigation. Proc. MTS/IEEE OCEANS Conf. 3, 2686–2691 (2005)Google Scholar
  13. 13.
    Myint, M., Yonemori, K., Yanou, A., Ishiyama, S., Minami, M.: Robustness of visual-servo against air bubble disturbance of underwater vehicle system using three-dimensional marker and dual-eye cameras. In: Proceedings of the MTS/IEEE OCEANS Conference, pp. 1–8 (2015)Google Scholar
  14. 14.
    Myint, M., Yonemori, K., Yanou, A., Lwin, K.N., Minami, M., Ishiyama, S.: Visual servoing for underwater vehicle using dual-eyes evolutionary real-time pose tracking. J. Robot. Mechatronics 28(4), 543–558 (2016)CrossRefGoogle Scholar
  15. 15.
    Myint, M., Yonemori, K., Yanou, A., Minami, M., Ishiyama, S.: Visual-servo-based autonomous docking system for underwater vehicle using dual-eyes camera 3D-pose tracking. In: Proceedings of the 2015 IEEE/SICE International Symposium on System Integration (SII), pp. 989–994 (2015)Google Scholar
  16. 16.
    Myint, M., Yonemori, K., Yanou, A., Lwin, K.N., Minami, M., Ishiyama, S.: Visual-based deep sea docking simulation of underwater vehicle using dual-eyes cameras with lighting adaptation. In: Proceedings of the MTS/IEEE OCEANS Conference, pp. 1–8 (2016)Google Scholar
  17. 17.
    Myint, M., Yonemori, K., Yanou, A., Lwin, K.N., Mukada, N., Minami, M.: Dual-eyes visual-based sea docking for sea bottom battery recharging. In: Proceedings of the MTS/IEEE OCEANS Conference Monterey, pp. 1–7 (2016)Google Scholar
  18. 18.
    Stokey, R., Purcell, M., Forrester, N., Austin, T., Goldsborough, R., Allen, B., von Alt, C.: A docking system for REMUS, an autonomous underwater vehicle. Proc. MTS/IEEE OCEANS Conf. 2, 1132–1136 (1997)CrossRefGoogle Scholar
  19. 19.
    Park, J.Y., Jun, B.H., Lee, P.M., Oh, J.H., Lim, Y.K.: Underwater docking approach of an under-actuated AUV in the presence of constant ocean current. IFAC Control Appl. Marine Syst. 43(20), 5–10 (2010)Google Scholar
  20. 20.
    Park, J.-Y., Jun, B.-H., Lee, P.-M., Lee, F.-Y., Oh, J.-h.: Experiment on underwater docking of an autonomous underwater vehicle ISimI using optical terminal guidance. In: OCEANS’2007-Europe, pp. 1–6 (2007)Google Scholar
  21. 21.
    Dunbabin, M., Lang, B., Wood, B.: Vision-based docking using an autonomous surface vehicle. In: IEEE International Conference on Robotics and Automation, pp. 26–32. Pasadena (2008)Google Scholar
  22. 22.
    Batista, P., Silvestre, C., Oliveira, P.: A two-step control strategy for docking of autonomous underwater vehicles. In: American Control Conference, pp. 5395–5400. Fairmont QueenElizabeth, Montrreal, Canada (2012)Google Scholar
  23. 23.
    Palomeras, N., Penalver, A., Massot-Campos, M., Vallicrosa, G.N., Gre, P.L., Fernandez, J.J., Ridao, P., Sanz, P.J., Oliver-Codina, G., Palomer, A.: I-AUV docking and intervention in a Subsea panel. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2279–2285. Chicago (2014)Google Scholar
  24. 24.
    Vasilijevic, A., Borovic, B., Vukic, Z.: Underwater vehicle localization with complementary filter: performance analysis in the shallow water environment. J. Intell. Robot. Syst. 68(3-4), 373–386 (2012)CrossRefGoogle Scholar
  25. 25.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: An efficient alternative to SIFT or SURF. In: IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571 (2011)Google Scholar
  26. 26.
    Kasaei, S.H., Oliveira, M., Lim, G.H., Lopes, L.S., Tomé, A.M.: Interactive open-ended learning for 3D object recognition: an approach and experiments. J. Intell. Robot. Syst. 80(3-4), 537–553 (2015)CrossRefGoogle Scholar
  27. 27.
    Wu, P., Liu, Y., Ye, M., Li, J., Du, S.: Fast and adaptive 3D reconstruction with extensively high completeness. In: IEEE Transactions on Multimedia (2016)Google Scholar
  28. 28.
    Agarwal, S., Furukawa, Y., Snavely, N., Simon, I., Curless, B., Seitz, S.M., Szeliski, R.: Building rome in a day. Commun. ACM 54(10), 105–112 (2011)CrossRefGoogle Scholar
  29. 29.
    Lwin, K.N., Yonemori, K., Myint, M., Naoki, M., Minami, M., Yanou, A., Matsuno, T.: Performance analyses and optimization of real-time multi-step ga for visual-servoing based underwater vehicle. In: Techno-oceans (2016)Google Scholar
  30. 30.
    Song, W., Fujia, Y., Minami, M.: 3-D visual servoing by feedforward evolutionary recognition. J. Adv. Mech. Des., Syst. Manuf. 4(4), 739–755 (2010)CrossRefGoogle Scholar
  31. 31.
    Suzuki, H., Minami, M.: Visual servoing to catch fish using global/local GA search. IEEE/ASME Trans. Mechatronics 10(3), 352–357 (2005)CrossRefGoogle Scholar
  32. 32.
    Song, W., Minami, M., Aoyagi, S.: On-line stable evolutionary recognition based on unit quaternion representation by Motion-Feedforward compensation. Int. J. Intell. Comput. Medical Sci. Image Process. (IC-MED) 2(2), 127–139 (2008)Google Scholar
  33. 33.
    Song, W., Minami, M.: On-line motion-feedforward pose recognition invariant for dynamic hand-eye motion. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1047–1052 (2008)Google Scholar
  34. 34.
    Song, W., Minami, M.: Stability / precision improvement of 6-DoF visual servoing by motion feedforward compensation and experimental evaluation. In: IEEE International Conference on Robotics and Automation, pp. 722–729 (2009)Google Scholar
  35. 35.
    Song, W., Minami, M.: Hand and eye-vergence dual visual servoing to enhance observability and stability. In: IEEE International Conference on Robotics and Automation, pp. 714–721 (2009)Google Scholar
  36. 36.
    Minami, M., Agbanhan, J., Asakura, T.: Evolutionary scene recognition and simultaneous position/orientation detection. In: Soft Computing in Measurement and Information Acquisition, pp. 178–207. Springer, Berlin (2003)Google Scholar
  37. 37.
    Suzuki, H., Minami, M.: Real-time recognition of multiple pedestrians using car-mouted camera. Electron. Commun. Part 3 89(4), 21–33 (2006)Google Scholar
  38. 38.
    Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Infor. Process. Lett. 85(6), 317–325 (2003)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Lin, H.I.: A fast and unified method to find a minimum-jerk robot joint trajectory using particle swarm optimization. J. Intell. Robot. Syst. 75(3-4), 379 (2014)CrossRefGoogle Scholar
  40. 40.
    Polden, J., Pan, Z., Larkin, N., van Duin, S.: Adaptive partial shortcuts: path optimization for industrial robotics. J. Intell. Robot. Syst 86(1), 35–47 (2017)CrossRefGoogle Scholar
  41. 41.
    Mousavian, S.H., Koofigar, H.R.: Identification-based robust motion control of an AUV: optimized by particle swarm optimization algorithm. J. Intell. Robot. Syst. 85(2), 331–352 (2017)CrossRefGoogle Scholar
  42. 42.
    Ma, X.M.: Application of ant colony algorithm in PID parameter optimization for mining hoist direct torque control system. In: ICACC’09 International Conference of Advanced Computer Control, pp. 632–636 (2009)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Myo Myint
    • 1
  • Kenta Yonemori
    • 1
  • Khin Nwe Lwin
    • 1
  • Akira Yanou
    • 2
  • Mamoru Minami
    • 1
  1. 1.Graduate School of Natural Science and TechnologyOkayama UniversityOkayamaJapan
  2. 2.Faculty of Health Science and TechnologyKawasaki University of Medical WelfareOkayamaJapan

Personalised recommendations