Vision-based Autonomous Landing Control for Unmanned Helicopters

  • Panos Marantos
  • George C. Karras
  • Panagiotis Vlantis
  • Kostas J. Kyriakopoulos


This paper presents the design of a complete control system for the autonomous landing of unmanned flybarless helicopters on known stationary visual landmarks. A state estimator based on the complementary filters notion, estimates the position, translational velocity and attitude vectors of the vehicle by fusing data acquired from the on–board camera and an Inertial Measurement Unit. A vision-aided nonlinear model predictive controller is designed for the landing motion of the helicopter, assuming that the on–board camera is rigidly (i.e., no additional Degrees of Freedom (DOF)) attached on the vehicle. Although the under–actuated character of the helicopter dynamics introduces counter–goals for minimizing the error between the vehicle and the landmark, the proposed control scheme guarantees, via hard nonlinear constraints, that the landmark will always be kept inside the camera field of view during the landing procedure. In order to simplify the derived algorithm without violating the robustness of the proposed controller, we reformulate the translational helicopter dynamics in order to reduce the number of the unknown model parameters to a minimum. Moreover, a parameter/disturbance observer is designed for estimating simultaneously the vehicle’s unknown dynamic parameters as well as the induced disturbances. The efficacy of the proposed landing scheme is evaluated via a set of experimental and simulation results, using a small–scale flybarless helicopter.


Unnmaned helicopters Model predective control State estimation Parameter identification Autonomous landing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cai, G., Chen, B.M., Lee, T.H.: Unmanned rotorcraft systems. Springer Science & Business Media, London (2011)CrossRefMATHGoogle Scholar
  2. 2.
    Cesetti, A., Frontoni, E., Mancini, A., Zingaretti, P., Longhi, S.: A vision-based guidance system for uav navigation and safe landing using natural landmarks. J. Intell. Robot. Syst. Theory Appl. 57(1–4), 233–257 (2010). CrossRefMATHGoogle Scholar
  3. 3.
    Duan, X., Dong, H., Wu, K., Tian, Z., Wang, Z.: UAV flight control based on RTX system simulation platform. Sensors Transducers 166(3), 1–6 (2014)Google Scholar
  4. 4.
    Gadewadikar, J., Lewis, F.L., Subbarao, K., Peng, K., Chen, B.M.: H static output-feedback control for rotorcraft. J. Intell. Robot. Syst. 54(4), 629–646 (2009)CrossRefGoogle Scholar
  5. 5.
    Garcia-Pardo, P., Sukhatme, G., Montgomery, J.: Towards vision-based safe landing for an autonomous helicopter. Robot. Autonom. Syst. 38(1), 19–29 (2002). CrossRefMATHGoogle Scholar
  6. 6.
    Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F., Marín-Jiménez, M.: Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recogn. 47(6), 2280–2292 (2014). CrossRefGoogle Scholar
  7. 7.
    Hamel, T., Mahony, R.: Visual servoing of an under-actuated dynamic rigid-body system: An image-based approach. IEEE Trans. Robot. Autom. 18(2), 187–198 (2002). CrossRefGoogle Scholar
  8. 8.
    Higgins, W.: A comparison of complementary and Kalman filtering. IEEE Trans. Aerospace Electron. Syst. 11, 321–325 (1975). CrossRefGoogle Scholar
  9. 9.
    Hooi, C.G., Lagor, F.D., Paley, D.A.: Flow sensing for height estimation and control of a rotor in ground effect: Modeling and experimental results. Annual Forum Proceedings - AHS International 3, 1878–1889 (2015)Google Scholar
  10. 10.
    Huang, H., Xu, Y.P., Deng, Z.W.: Real-time visual flight simulation system based on Flightgear simulator. Xitong Fangzhen Xuebao / J. Syst. Simul. 19(19), 4421–4423 (2007)Google Scholar
  11. 11.
    Isermann, R., Schaffnit, J., Sinsel, S.: Hardware-in-the-loop simulation for the design and testing of engine-control systems. Control Eng. Pract. 7(5), 643–653 (1999)CrossRefGoogle Scholar
  12. 12.
    Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol 3, pp. 2149–2154. (2004)Google Scholar
  13. 13.
    Liu, C., Chen, W.H., Andrews, J.: Tracking control of small-scale helicopters using explicit nonlinear MPC augmented with disturbance observers. Control Eng. Pract. 20(3), 258–268 (2012). CrossRefGoogle Scholar
  14. 14.
    Mahony, R., Hamel, T.: Robust trajectory tracking for a scale model autonomous helicopter. Int. J. Robust Nonlinear Control 14(12), 1035–1059 (2004). MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Marantos, P., Karras, G.C., Bechlioulis, C.P., Kyriakopoulos, K.J.: Autonomous model-free landing control of small-scale flybarless helicopters. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA). (2015)
  16. 16.
    Marantos, P., Koveos, Y., Kyriakopoulos, K.J.: Uav state estimation using adaptive complementary filters. IEEE Trans. Control Syst. Technol. 24(4), 1214–1226 (2016). CrossRefGoogle Scholar
  17. 17.
    Marantos, P., Karras, G.C., Vlantis, P., Kyriakopoulos, K.J.: Simulation & Experimental Results Video - Vision-based Autonomous Landing Control for Unmanned Helicopters. (2017)
  18. 18.
    Marconi, L., Naldi, R.: Robust full degree-of-freedom tracking control of a helicopter. Automatica 43(11), 1909–1920 (2007). MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: Stability and optimality. Automatica 36, 789–814 (2000)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Merz, T., Duranti, S., Conte, G.: Autonomous landing of an unmanned helicopter based on vision and inertial sensing. Springer Tracts Adv. Robot. 21, 343–352 (2006). CrossRefGoogle Scholar
  21. 21.
    Morari, M., Leeb, J.H.: Model predictive control: Past, present and future. Comput. Chem.l Eng. 23, 667–682 (1999)CrossRefGoogle Scholar
  22. 22.
    Olivares-Mendez, M., Mondragon, I., Campoy, P.: Autonomous landing of an unmanned aerial vehicle using image-based fuzzy control. 2, 79–86. (2013).
  23. 23.
    Patel, K., Barve, J.: Modeling, simulation and control study for the quad-copter UAV. In: 2014 9th International Conference on Industrial and Information Systems (ICIIS), pp. 1–6. (2014).
  24. 24.
    Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, A.: ROS: An open-source robot operating system. In: ICRA Workshop on Open Source Software vol. 3, p. 5 (2009)Google Scholar
  25. 25.
    Raptis, I.A., Valavanis, K.P.: Linear and nonlinear control of small-scale unmanned helicopters, vol. 25. Springer Science & Business Media, Dordrecht (2010)Google Scholar
  26. 26.
    Ruffier, F., Franceschini, N.: Optic flow regulation in unsteady environments: A tethered MAV achieves terrain following and targeted landing over a moving platform. J. Intell. Robot. Syst. Theory Appl. 79(2), 275–293 (2015). CrossRefGoogle Scholar
  27. 27.
    Saripalli, S., Sukhatme, G.S.: Landing a helicopter on a moving target. In: Proceedings of the 2007 IEEE International Conference on Robotics & Automation (ICRA), pp 2030–2035. IEEE, Rome (2007).
  28. 28.
    Saripalli, S., Montgomery, J., Sukhatme, G.: Visually guided landing of an unmanned aerial vehicle. IEEE Trans.on Robot. Autom. 19(3), 371–380 (2003). CrossRefGoogle Scholar
  29. 29.
    Templeton, T., Shim, D., Geyer, C., Sastry, S.: Autonomous vision-based landing and terrain mapping using an mpc-controlled unmanned rotorcraft. pp 1349–1356. (2007).
  30. 30.
    Vaerenbergh, S.V., Vía, J., Santamaría, I.: Nonlinear system identification using a new sliding-window kernel rls algorithm. J. Commun. 2(3), 1–8 (2007)CrossRefGoogle Scholar
  31. 31.
    Vlantis, P., Marantos, P., Bechlioulis, C.P., Kyriakopoulos, K.J.: Quadrotor landing on an inclined platform of a moving ground vehicle. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2202–2207. (2015).
  32. 32.
    Vogeltanz, T.: A Survey of Free Software for the Design, Analysis, Modelling, and Simulation of an Unmanned Aerial Vehicle. Arch. Comput. Meth. Eng. 23(3), 449–514 (2016). CrossRefMATHGoogle Scholar
  33. 33.
    Wenzel, K., Masselli, A., Zell, A.: Automatic take off, tracking and landing of a miniature uav on a moving carrier vehicle. J. Intell. Robot. Syst. Theory Appl. 61(1-4), 221–238 (2011)CrossRefGoogle Scholar
  34. 34.
    Yili, S., Ziyang, Z., Chaojie, O., Huangzhong, P.: 3D scene simulation of UAVs formation flight based on FlightGear simulator. In: 2014 IEEE Chinese on Guidance, Navigation and Control Conference (CGNCC), pp. 1978–1982. (2014).
  35. 35.
    Yu, Z., Nonami, K., Shin, J., Celestino, D.: 3d vision based landing control of a small scale autonomous helicopter. Int. J. Adv. Robot. Syst. 4(1), 51–56 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Panos Marantos
    • 1
  • George C. Karras
    • 1
  • Panagiotis Vlantis
    • 1
  • Kostas J. Kyriakopoulos
    • 1
  1. 1.Control Systems Lab, School of Mechanical EngineeringNational Technical University of AthensAthensGreece

Personalised recommendations