Robust and Safe Coordination of Multiple Robotic Manipulators

An Approach Using Modified Avoidance Functions
  • Shankar A. Deka
  • Xiao Li
  • Dušan M. Stipanović
  • Thenkurussi Kesavadas
Article
  • 56 Downloads

Abstract

This paper develops a strategy for collision avoidance among a system of robotic manipulators by using joint feedback controllers in the joint space, which have a closed form. The joint positions are directly used in computing the joint torques, without any additional intermediate steps for computing shortest distances or gradients of shortest distances between the links. Furthermore the collision avoidance controller can be augmented to any stable controller with different objectives, such as position tracking, velocity consensus etc. We consider set point stabilization as a control objective in this paper, and a Lyapunov based analysis is used to show convergence of the joints to their desired positions while guaranteeing collision avoidance among the links of the manipulators and avoiding deadlocks (unwanted local minima). The proposed control methodology is illustrated using some simulation and experimental results.

Keywords

Collision avoidance Feedback control Robotic manipulators 

Mathematics Subject Classification (2010)

93C15 34H05 93C10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was partially supported by the National Science Foundation under Award Numbers CNS 13-14891 and CNS 15-45069, and a grant through the JUMP-ARCHES (Applied Research for Community Health through Engineering and Simulation) program for addressing safety and reliability of surgical robots. This project was carried out at the Health Care Engineering Systems Center at Illinois.

References

  1. 1.
    Barmish, B.R., WE, S., Leitmann, G.: A note on avoidance control. J. Dyn. Syst. Measur. Control 103(1), 69–70 (1981)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Brock, O., Khatib, O.: Mobile manipulation: Collision-free path modification and motion coordination. In: Proceedings of the Second International Conference on Computational Engineering in Systems Applications, vol. 4, pp. 839–845. Hammamet, Tunisia (1998)Google Scholar
  3. 3.
    Brock, O., Khatib, O.: Real-time obstacle avoidance and motion coordination in a multi-robot workcell. In: ISATP, pp. 274–279, Porto (1999)Google Scholar
  4. 4.
    Corless, M., Leitmann, G., Skowronski, J.M.: Adaptive control for avoidance or evasion in an uncertain environment. Comput. Math. Appl. 13, 1–11 (1987)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Dimarogonas, D.V., Kyriakopoulos, K.J.: Decentralized navigation functions for multiple robotic agents with limited sensing capabilities. J. Intell. Robot. Syst. 48(3), 411–433 (2007)CrossRefGoogle Scholar
  6. 6.
    Glass, K., Colbaugh, R., Lim, D., Seraji, H.: Real-time collision avoidance for redundant manipulators. IEEE Trans. Robot. Autom. 11(3), 448–457 (1995)CrossRefGoogle Scholar
  7. 7.
    Hokayem, P.F., Stipanovic, D.M., Spong, M.W.: Coordination and collision avoidance for lagrangian systems with disturbances. Appl. Math. Comput. 217(3), 1085–1094 (2010)MathSciNetMATHGoogle Scholar
  8. 8.
    Hwang, Y., Ahuja, N.: A potential field approach to path planning. IEEE Trans. Robot. Autom. 8(1), 23–32 (1992)CrossRefGoogle Scholar
  9. 9.
    Hwang, Y.K., Ahuja, N.: Gross motion planning-a survey. ACM Comput. Surv. 24(3), 219–291 (1992)CrossRefGoogle Scholar
  10. 10.
    Khalil, H.: Nonlinear systems. Pearson Education. Prentice Hall. ISBN 9780130673893, London (2002)MATHGoogle Scholar
  11. 11.
    Khansari-Zadeh, S.M., Khatib, O.: Learning potential functions from human demonstrations with encapsulated dynamic and compliant behaviors. Autonomous Robots 41, 45–69 (2017).  https://doi.org/10.1007/s10514-015-9528-y CrossRefGoogle Scholar
  12. 12.
    Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986)CrossRefGoogle Scholar
  13. 13.
    Khosla, P., Volpe, R.: Superquadric artificial potentials for obstacle avoidance and approach. In: Proceedings 1988 IEEE International Conference on Robotics and Automation, vol. 3, pp. 1778–1784 (1988).  https://doi.org/10.1109/ROBOT.1988.12323
  14. 14.
    Jo, K., Khosla, P.K.: Real-time obstacle avoidance using harmonic potential functions. IEEE Trans. Robot. Autom. 8(3), 338–349 (1992)CrossRefGoogle Scholar
  15. 15.
    King, H., Kosari, S.N., Hannaford, B.: Kinematic analysis of the raven-ii research surgical robot, s.l.: University of washington electrical engineering. Technical report (2016)Google Scholar
  16. 16.
    Leitmann, G.: Guaranteed avoidance feedback control. J. Optim. Theory Appl. 25(4), 850–851 (1980)MATHGoogle Scholar
  17. 17.
    Leitmann, G.: Guaranteed avoidance strategies. J. Optim. Theory Appl. 32(4), 569–576 (1980)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Leitmann, G., Skowronski, J.: Avoidance control. J. Optim. Theory 23, 581–591 (1977)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Leitmann, G., Skowronski, J.: Avoidance control. J. Optim. Theory Appl. 23(4), 581–591 (1980)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Leitmann, G., Skowronski, J.: A note on avoidance control. Opt. Control Appl. Methods 4(4), 335–342 (1983)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Li, X., Deka, S.A., Kesavadas, T.: Interactive path planning for a telerobotic surgery training simulator platform. Submitted (2016)Google Scholar
  22. 22.
    Lin, C.C., Chuang, J.H.: Potential-based path planning for robot manipulators in 3-d workspace. In: 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), vol. 3, pp. 3353–3358 (2003)Google Scholar
  23. 23.
    Lum, M.J.H., Friedman, D.C.W., Sankaranarayanan, G., King, H., Fodero, K., Leuschke, R., Hannaford, B., Rosen, J., Sinanan, M.N.: The raven: Design and validation of a telesurgery system. Int. J. Robot. Res. 28(9), 1183–1197 (2009).  https://doi.org/10.1177/0278364909101795 CrossRefGoogle Scholar
  24. 24.
    Maciejewski, A.A., Klein, C.A.: Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments. Int. J. Robot. Res. 4(3), 109–117 (1985)CrossRefGoogle Scholar
  25. 25.
    Mastellone, S., Stipanovic, D.M., Graunke, C., Intlekofer, K.A., Spong, M.W.: Formation control and collision avoidance for multi-agent non-holonomic systems: theory and experiments. Int. J. Robot. Res. 27(1), 107–126 (2008)CrossRefGoogle Scholar
  26. 26.
    Munasinghe, S.R., Oh, C., Lee, J.J., Khatib, O.: Obstacle avoidance using velocity dipole field method. In: Proceedings of the International Conference on Control, Automation and Systems, pp. 1657–1661, Gyeonggi-DO (2005)Google Scholar
  27. 27.
    Pawluszewicz, E., Torres, D.: Avoidance control on time scales. J. Optim. Theory Appl. 145(3), 527–542 (2010)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Rahmanian-Shahri, N., Troch, I.: Collision-avoidance for redundant robots through control of the self-motion of the manipulator. J. Intell. Robot. Syst. 16(2), 123–149 (1996)CrossRefGoogle Scholar
  29. 29.
    Rimon, E., Koditschek, D.: Exact robot navigation using artificial potential functions. IEEE Trans. Robot. Autom. 8(5), 510–518 (1992)CrossRefGoogle Scholar
  30. 30.
    Rodríguez-Seda, E.J, Stipanovic, D.M., Spong, M.W.: Collision avoidance control with sensing uncertainties. s.l. In: Proceedings of the 2011 American Control Conference, pp. 3363–3368. IEEE, San Francisco (2011)Google Scholar
  31. 31.
    Rodríguez-Seda, E.J., Stipanovic, D.M., Spong, M.W.: Guaranteed collision avoidance for autonomous systems with acceleration constraints and sensing uncertainties. J. Optim. Theory Appl. 168(3), 1014–1038 (2016)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Rodríguez-Seda, E.J., Tang, C., Spong, M.W., Stipanovic, D.M.: Trajectory tracking with collision avoidance for nonholonomic vehicles with acceleration constraints and limited sensing. Int. J. Robot. Res. 33(12), 1569–1592 (2014)CrossRefGoogle Scholar
  33. 33.
    Schlegl, T., Kröger, T., Gaschler, A., Khatib, O., Zangl, H.: Virtual whiskers - highly responsive robot collision avoidance. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5373–5379 (2013).  https://doi.org/10.1109/IROS.2013.6697134
  34. 34.
    Shevitz, D., Paden, B.: Lyapunov stability theory of nonsmooth systems. IEEE Trans. Autom. Control 39(9), 1910–1914 (1994)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Stipanovic, D.M., Hokayem, P.F., Spong, M.W., Siljak, G.D.: Cooperative avoidance control for multiagent systems. J. Dyn. Syst. Measur. Control 129(5), 699–707 (2007)CrossRefGoogle Scholar
  36. 36.
    Zlajpah, L., Nemec, B.: Kinematic control algorithms for on-line obstacle avoidance for redundant manipulators. In: Conference I (ed.) Proceedings of the International Conference on Intellegent Robots and Systems, pp. 1898–1903. IEEE, Switzerland (2002)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Shankar A. Deka
    • 1
  • Xiao Li
    • 1
  • Dušan M. Stipanović
    • 2
  • Thenkurussi Kesavadas
    • 3
  1. 1.Mechanical Science and Engineering DepartmentUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Coordinated Science LabUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Industrial and Enterprise Systems Engineering DepartmentUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations