Advertisement

Spline-based RRT Using Piecewise Continuous Collision-checking Algorithm for Car-like Vehicles

  • Sangyol Yoon
  • Dasol Lee
  • Jiwon Jung
  • David Hyunchul Shim
Article
  • 184 Downloads

Abstract

This paper presents a path planning algorithm that can efficiently check for interference with potential obstacles while piecewise continuously computing the required space of moving car-like vehicles using cubic Bezier curves. Our collision-checking algorithm uses trajectories generated from a vehicle’s front outer corner and rear inner axle, as well as partially overlapped rectangles. These outer and inner trajectories are computed from the trajectory generated by the center of the rear axle of the vehicle, which considers the dimensions of the vehicle, and the tangential and normal vectors of the trajectory. To validate the continuity and efficacy of our collision-checking algorithm, the collision-checking algorithm is applied to a spline-based RRT, where the kinematics (or minimum turning radius) of car-like vehicles is satisfied using cubic Bezier curves. We show the benefits of our method through simulations and experimental results by using an autonomous ground vehicle.

Keywords

Collision checking Bezier curve Car-like vehicle RRT Autonomous driving 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

(MTS 98.9 MB)

References

  1. 1.
    Likhachev, M., Ferguson, D.: Planning long dynamically feasible maneuvers for autonomous vehicles. Int. J. Robot. Res. 28(8), 933–945 (2009)CrossRefGoogle Scholar
  2. 2.
    Dolgov, D., Thrun, S., Montemerlo, M., Diebel, J.: Path planning for autonomous vehicles in unknown semi-structured environments. Int. J. Robot. Res. 29(5), 485–501 (2010)CrossRefGoogle Scholar
  3. 3.
    Yoon, S., Yoon, S. E., Lee, U., Shim, D.H.: Recursive path planning using reduced states for car-like vehicles on grid maps. IEEE Trans. Intell. Transp. Syst. 16(5), 2797–2813 (2015)CrossRefGoogle Scholar
  4. 4.
    Koenig, S., Likhachev, M., Furcy, D.: Lifelong planning A. Artif. Intell. 155, 93–146 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Yoon, S., Shim, D.H.: SLPA,: Shape-aware lifelong planning A for differential wheeled vehicles. IEEE Trans. Intell. Transp. Syst. 16(2), 730–740 (2015)Google Scholar
  6. 6.
    Svestka, P., Overmars, M.H.: Coordinated motion planning for multiple car-like robots using probabilistic roadmaps. In: ICRA, pp 1631–1636 (1995)Google Scholar
  7. 7.
    LaValle, S. M., James, J., Kuffner, J.: Randomized kinodynamic planning. Int. J. Robot. Res. 20(5), 378–400 (2001)CrossRefGoogle Scholar
  8. 8.
    Kuwata, Y., Teo, J., Fiore, G., Karaman, S., Frazzoli, E., How, J.P.: Real-time motion planning with applications to autonomous urban driving. IEEE Trans. Control Syst. Technol. 17(5), 1105–1118 (2009)CrossRefGoogle Scholar
  9. 9.
    Goretkin, G., Perez, A., Platt, R, Konidaris, G.: Optimal sampling-based planning for linear-quadratic kinodynamic systems. In: ICRA, pp. 2429–2436 (2013)Google Scholar
  10. 10.
    Karaman, S., Frazzoli, E.: Optimal kinodynamic motion planning using incremental sampling-based methods. In: IEEE Conference on Decision and Control, pp. 7681–7687 (2010)Google Scholar
  11. 11.
    Yang, K., Moon, S., Yoo, S., Kang, J., Doh, N. L., Kim, H. B., Joo, S.: Spline-based RRT path planner for non-holonomic robots. J. Intell Robot Syst. 1–20 (2013)Google Scholar
  12. 12.
    Yang, K., Gan, S. K., Huh, J., Joo, S.: Optimal spline-based RRT path planning using probabilistic map. In: International Conference on Control, Automation and Systems (ICCAS), pp. 643–646 (2014)Google Scholar
  13. 13.
    Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 79(3), 497–516 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Connors, J., Elkaim, G.: Analysis of a spline based, obstacle avoiding path planning algorithm. In: IEEE Vehicular Technology Conference, pp. 2565–2569 (2007)Google Scholar
  15. 15.
    Perez, A., Platt, R, Konidaris, G., Kaelbling, L., Lozano-Perez, T.: LQR-RRT: Optimal sampling-based motion planning with automatically derived extension heuristics. In: ICRA, pp. 2537–2542 (2012)Google Scholar
  16. 16.
    Webb, D. J., van den Berg, J.: Kinodynamic RRT: Asymptotically optimal motion planning for robots with linear dynamics. In: ICRA, pp. 5054–5061 (2013)Google Scholar
  17. 17.
    Palmieri, L., Arras, K.O.: A novel RRT extend function for efficient and smooth mobile robot motion planning. In: IROS, pp. 205–211 (2014)Google Scholar
  18. 18.
    Yershova, A., Jaillet, L., Siméon, T., LaValle, S.M.: Dynamic-domain RRTs: Efficient exploration by controlling the sampling domain. In: ICRA, pp. 3856–3861 (2005)Google Scholar
  19. 19.
    Lee, J., Kwon, O., Zhang, L., Yoon, S.E.: A selective retraction-based RRT planner for various environments. IEEE Trans. Robot. 30(4), 1002–1011 (2014)CrossRefGoogle Scholar
  20. 20.
    Pruski, A., Rohmer, S.: Robust path planning for non-holonomic robots. J. Intell. Robot. Syst. 18(4), 329–350 (1997)CrossRefGoogle Scholar
  21. 21.
    Varadhan, G., Sriram, S. K. T. V. N., Manocha, D.: A simple algorithm for complete motion planning of translating polyhedral robots. Int. J. Robot. Res. 24(11), 983–995 (2005)CrossRefGoogle Scholar
  22. 22.
    Wise, K. D., Bowyer, A.: A survey of global configuration-space mapping techniques for a single robot in a static environment. Int. J. Robot. Res. 19(8), 762–779 (2000)CrossRefGoogle Scholar
  23. 23.
    Minguez, J., Montano, L.: Extending collision avoidance methods to consider the vehicle shape, kinematics, and dynamics of a mobile robot. IEEE Trans. Robot. 25(2), 367–381 (2009)CrossRefGoogle Scholar
  24. 24.
    Yang, K., Sukkarieh, S.: An analytical continuous-curvature path-smoothing algorithm. IEEE Trans. Robot. 26(3), 561–568 (2010)CrossRefGoogle Scholar
  25. 25.
    Bicchi, A., Casalino, G., Santilli, C.: Planning shortest bounded-curvature paths for a class of nonholonomic vehicles among obstacles. J. Intell. Robot. Syst. 16, 387–405 (1996)CrossRefGoogle Scholar
  26. 26.
    Geraerts, R., Overmars, M.H.: The corridor map method: a general framework for real-time high-quality path planning. Comput. Anim. Virt. Worlds 18, 107–119 (2007)CrossRefGoogle Scholar
  27. 27.
    Maekawa, T., Noda, T., Tamura, S., Ozaki, T., Ichiro Machida, K.: Curvature continuous path generation for autonomous vehicle using B-spline curves. Comput. Aided Des. 42, 350–359 (2010)CrossRefGoogle Scholar
  28. 28.
    Gómez-Bravo, F., Cuesta, F., Ollero, A.: Parallel and diagonal parking in nonholonomic autonomous vehicles. Eng. Appl. Artif. Intel. 14(4), 419–434 (2001)CrossRefGoogle Scholar
  29. 29.
    Jazar, R.N.: Vehicle Dynamics: Theory and Applications. Springer (2008)Google Scholar
  30. 30.
    Luca, A. D., Oriolo, G., Samson, C., Laumond, J.P.: Feedback control of a nonholonomic car-like robot. In:Robot motion planning and control, pp. 171–253. Springer (1998)Google Scholar
  31. 31.
    Anand, V.B.: Computer Graphics and Geometric Modeling for Engineers, 1st edn. Wiley (1993)Google Scholar
  32. 32.
    Zill, D. G., Cullen, M.R.: Advanced Engineering Mathematics PWS. Publishing Company (1992)Google Scholar
  33. 33.
    Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30 (7), 846–894 (2011)CrossRefzbMATHGoogle Scholar
  34. 34.
    Karaman, S., Frazzoli, E.: Sampling-based optimal motion planning for non-holonomic dynamical systems. In: ICRA, pp. 5041–5047 (2013)Google Scholar
  35. 35.
    Lee, U., Jung, J., Shin, S., Jeong, Y., Park, K., Shim, D. H., So Kwon, I.: EureCar turbo: A self-driving car that can handle adverse weather conditions. In: The International Conference of Intelligent Robots and Systems (IROS), pp. 2301–2306 (2016)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Sangyol Yoon
    • 1
  • Dasol Lee
    • 2
  • Jiwon Jung
    • 2
  • David Hyunchul Shim
    • 2
  1. 1.LG Electronics Inc.SeoulKorea
  2. 2.Department of Aerospace EngineeringKAISTDaejeonKorea

Personalised recommendations