Journal of Intelligent & Robotic Systems

, Volume 91, Issue 3–4, pp 377–401 | Cite as

Non-decoupled Locomotion and Manipulation Planning for Low-Dimensional Systems

  • Karim BouyarmaneEmail author
  • Abderrahmane Kheddar


We demonstrate the possibility of solving planning problems by interleaving locomotion and manipulation in a non-decoupled way. We choose three low-dimensional minimalistic robotic systems and use them to illustrate our paradigm: a basic one-legged locomotor, a two-link manipulator with a manipulated object, and a simultaneous locomotion-and-manipulation system. Using existing motion planning and control methods initially designed for either locomotion or manipulation tasks, we see how they apply to both our locomotion-only and manipulation-only systems through parallel derivations, and extend them to the simultaneous locomotion-and-manipulation system. Motion planning is solved for these three systems using two different methods: (i) a geometric path-planning-based one, and (ii) a kinematic control-theoretic-based one. Motion control is then derived by dynamically realizing the geometric paths or kinematic trajectories under the Couloumb friction model using torques as control inputs. All three methods apply successfully to all three systems, showing that the non-decoupled planning is possible.


Locomotion planning Manipulation planning Contact planning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was partially supported by the H2020 COMANOID EU project and the by the JSPS Grant-in-Aid for Scientific Research (B) Number 16H02886 (“Cutting-Edge multi-contact behaviors”).


  1. 1.
    Alami, R., Laumond, J.P., Siméon, T.: Two manipulation planning algorithms. In: Proceedings of the Workshop on Algorithmic Foundations of Robotics, pp. 109–125 (1995)Google Scholar
  2. 2.
    Ames, A.D., Powell, M.: Towards the unification of locomotion and manipulation through control Lyapunov functions and quadratic programs. In: Control of Cyber-Physical Systems, pp. 219–240. Springer (2013)Google Scholar
  3. 3.
    Arai, T.: Robots with integrated locomotion and manipulation and their future. In: Proceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots and Systems’ 96, IROS 96, vol. 2, pp. 541–545. IEEE (1996)Google Scholar
  4. 4.
    Avnaim, F., Boissonnat, J.D.: Polygon placement under translation and rotation. In: Symposium on Theoretical Aspects of Computer Science, pp. 322–333 (1988)Google Scholar
  5. 5.
    Ben-Tzvi, P.: Hybrid Mobile Robot Systems: Interchanging Locomotion and Manipulation. Ph.D. thesis, University of Toronto (2008)Google Scholar
  6. 6.
    Ben-Tzvi, P., Goldenberg, A., Zu, J.: Design and analysis of a hybrid mobile robot mechanism with compounded locomotion and manipulation capability. Transactions of the ASME Journal of Mechanical Design 130, 1–13 (2008)CrossRefGoogle Scholar
  7. 7.
    Bobrow, J., Dubowsky, S., Gibson, J.: Time-optimal control of robotic manipulators along specified paths. Int. J. Robot. Res. 4(3), 3–17 (1985)CrossRefGoogle Scholar
  8. 8.
    Bouyarmane, K., Kheddar, A.: Static multi-contact inverse problem for multiple humanoid robots and manipulated objects. In: IEEE-RAS International Conference on Humanoid Robots, pp. 8–13 (2010)Google Scholar
  9. 9.
    Bouyarmane, K., Kheddar, A.: Fem-based static posture planning for a humanoid robot on deformable contact support. In: IEEE-RAS International Conference on Humanoid Robots, pp. 487–492 (2011)Google Scholar
  10. 10.
    Bouyarmane, K., Kheddar, A.: Humanoid robot locomotion and manipulation step planning. Adv. Robot. 26(10), 1099–1126 (2012)CrossRefGoogle Scholar
  11. 11.
    Bouyarmane, K., Kheddar, A.: On the dynamics modeling of free-floating-base articulated mechanisms and applications to humanoid whole-body dynamics and control. In: IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pp. 36–42 (2012)Google Scholar
  12. 12.
    Bouyarmane, K., Vaillant, J., Morimoto, J.: Low-dimensional user control of autonomously planned whole-body humanoid locomotion motion towards brain-computer interface applications, pp. 740–748.
  13. 13.
    Bouyarmane, K., Vaillant, J., Sugimoto, N., Keith, F., Furukawa, J.i., Morimoto, J.: Brain-machine interfacing control of whole-body humanoid motion. Front. Syst. Neurosci. 8, 138 (2014).
  14. 14.
    Bullo, F., Lewis, A.D.: Geometric Control of Mechanical Systems. Springer, New York (2000)zbMATHGoogle Scholar
  15. 15.
    Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory Algorithms, and Implementations. The MIT Press, Cambridge (2005)zbMATHGoogle Scholar
  16. 16.
    Craig, J.J.: Introduction to Robotics: Mechanics and Control, 3rd edn. Prentice Hall, Englewood Cliffs (2004)Google Scholar
  17. 17.
    Dang, D., Lamiraux, F., Laumond, J.P.: A framework for manipulation and locomotion with realtime footstep replanning. In: 2011 11th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 676–681. IEEE (2011)Google Scholar
  18. 18.
    Escande, A., Kheddar, A., Miossec, S.: Planning support contact-points for humanoid robots and experiments on HRP-2. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2974–2979. Beijing, China (2006)Google Scholar
  19. 19.
    Escande, A., Kheddar, A., Miossec, S.: Planning contact points for humanoid robots. Robot. Auton. Syst. 61(5), 428–442 (2013).
  20. 20.
    Esteves, C., Arechavelata, G., Pettré, J., Laumond, J.P.: Animation planning for virtual characters cooperation. ACM Trans. Graph. 25(2), 319–339 (2006)CrossRefGoogle Scholar
  21. 21.
    Goodwine, B., Burdick, J.: Controllability of kinematic control systems on stratified configuration spaces. IEEE Trans. Autom. Control 46(3), 358–368 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Goodwine, B., Burdick, J.: Motion planning for kinematic stratified systems with application to quasi-static legged locomotion and finger gaiting. IEEE Trans. Robot. Autom. 18(2), 209–222 (2002)CrossRefzbMATHGoogle Scholar
  23. 23.
    Hauser, K., Bretl, T., Latombe, J.C., Harada, K., Wilcox, B.: Motion planning for legged robots on varied terrain. Int. J. Robot. Res. 27(11–12), 1325–1349 (2008)CrossRefGoogle Scholar
  24. 24.
    Hauser, K., Ng-Thow-Hing, V., Gonzalez-Baños, H.: Multi-modal motion planning for a humanoid robot manipulation task. In: Kaneko, M., Nakamura, Y. (eds.) International Symposium Robotics Research, pp. 307-317. Springer, Berlin, Heidelberg (2011)Google Scholar
  25. 25.
    Hopcroft, J., Wilfong, G.: Motion of objects in contact. Int. J. Robot. Res. 4(4), 32–46 (1986)CrossRefGoogle Scholar
  26. 26.
    Isham, C.: Modern Differential Geometry for Physicists, World Scientific Lecture Notes in Physics, vol. 61, 2nd edn. World Scientific (1999)Google Scholar
  27. 27.
    Kajita, S., Espiau, B.: Springer Handbook of Robotics, chap. Legged Robots. Springer, New York (2008)Google Scholar
  28. 28.
    Kanoun, O., Laumond, J.: Optimizing the stepping of a humanoid robot for a sequence of tasks. In: IEEE-RAS International Conference on Humanoid Robots (2010)Google Scholar
  29. 29.
    Kanoun, O., Laumond, J., Yoshida, E.: Planning foot placements for a humanoid robot: a problem of inverse kinematics. Int. J. Robot. Res. 30(4), 476–485 (2011)CrossRefGoogle Scholar
  30. 30.
    Kemp, C.C., Fitzpatrick, P., Hirukawa, H., Yokoi, K., Harada, K., Matsumoto, Y.: Springer Handbook of Robotics, chap. Humanoids. Springer, New York (2008)Google Scholar
  31. 31.
    Koyachi, N., Arai, T., Adachi, H., Itoh, Y.: Integrated limb mechanism of manipulation and locomotion for dismantling robot-basic concept for control and mechanism. In: Proceedings of the 1993 IEEE/Tsukuba International Workshop on Advanced Robotics, 1993. Can Robots Contribute to Preventing Environmental Deterioration?, pp. 81–84. IEEE (1993)Google Scholar
  32. 32.
    Lafferriere, G., Sussmann, H.J.: A differential geometric approach to motion planning. In: Nonholonomic Motion Planning, pp. 235–270. Kluwer (1993)Google Scholar
  33. 33.
    Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Norwell (1991)CrossRefzbMATHGoogle Scholar
  34. 34.
    Laumond, J.P.: Robot Motion Planning and Control. Springer, New York (1998)CrossRefGoogle Scholar
  35. 35.
    LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)CrossRefzbMATHGoogle Scholar
  36. 36.
    M’closkey, R.T., Murray, R.M.: Exponential stabilization of driftless nonlinear control systems using homogeneous feedback. IEEE Trans. Autom. Control 42(5), 614–628 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Moulard, T., Lamiraux, F., Bouyarmane, K., Yoshida, E.: Roboptim: an optimization framework for robotics. In: Robomec, p. 4 (2013)Google Scholar
  38. 38.
    Murray, R.M., Li, Z., Sastry, S.S.: A mathematical introduction to robotic manipulation. CRC Press, Boca Raton (1994)zbMATHGoogle Scholar
  39. 39.
    Saab, L., Soueres, P., Fourquet, J.: Coupling manipulation and locomotion tasks for a humanoid robot. In: International Conference on Advances in Computational Tools for Engineering Applications, 2009. ACTEA’09, pp. 84–89. IEEE (2009)Google Scholar
  40. 40.
    Saut, J.P., Sahbani, A., El-Khoury, S., Perdereau, V.: Dexterous manipulation planning using probabilistic roadmaps in continuous grasp subspaces. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2907–2912. San Diego, CA, USA (2007)Google Scholar
  41. 41.
    Siméon, T., Laumond, J.P., Cortés, J., Sahbani, A.: Manipulation planning with probabilistic roadmaps. Int. J. Robot. Res. 23(7–8), 729–746 (2004)CrossRefGoogle Scholar
  42. 42.
    Srinivasa, S.S., Erdmann, M.A., Mason, M.T.: Using projected dynamics to plan dynamic contact manipulation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3618–3623. Edmonton, Alta., Canada (2005)Google Scholar
  43. 43.
    Vaillant, J., Bouyarmane, K., Kheddar, A.: Multi-character physical and behavioral interactions controller. IEEE Trans. Vis. Comput. Graph. 23(6), 1650–1662 (2017)CrossRefGoogle Scholar
  44. 44.
    Vaillant, J., Kheddar, A., Audren, H., Keith, F., Brossette, S., Escande, A., Bouyarmane, K., Kaneko, K., Morisawa, M., Gergondet, P., Yoshida, E., Kajita, S., Kanehiro, F.: Multi-contact vertical ladder climbing with an HRP-2 humanoid. Auton. Robot. 40(3), 561–580 (2016). CrossRefGoogle Scholar
  45. 45.
    Xu, J., Koo, J., Li, Z.: Finger gaits planning for multifingered manipulation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2932–2937. San Diego, CA, USA (2007)Google Scholar
  46. 46.
    Yamamoto, Y., Yun, X.: Coordinating locomotion and manipulation of a mobile manipulator. In: Proceedings of the 31st IEEE Conference on Decision and Control, 1992, pp. 2643–2648. IEEE (1992)Google Scholar
  47. 47.
    Yamane, K., Kuffner, J., Hodgins, J.K.: Synthesizing animations of human manipulation tasks. ACM Transactions on Graphics (SIGGRAPH) 23(3), 532–539 (2004)CrossRefGoogle Scholar
  48. 48.
    Yashima, M., Shiina, Y., Yamaguchi, H.: Randomized manipulation planning for a multi-fingered hand by switching contact modes. In: IEEE International Conference on Robotics and Automation, vol. 2, pp. 2689–2694 (2003)Google Scholar
  49. 49.
    Yoshida, E., Esteves, C., Kanoun, O., Poirier, M., Mallet, A., Laumond, J.P., Yokoi, K.: Planning whole-body humanoid locomotion, reaching, and manipulation. In: Motion Planning for Humanoid Robots, pp. 99–128. Springer (2010)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Université de Lorraine, CNRSVandœuvre-les-NancyFrance
  2. 2.CNRS-AIST Joint Robotics Laboratory (JRL)TsukubaJapan
  3. 3.LIRMM - Interactive Digital Human GroupCNRS-University of MontpellierMontpellierFrance

Personalised recommendations