Skip to main content

A Novel Sensor Fault Detection in an Unmanned Quadrotor Based on Adaptive Neural Observer

Abstract

Prompt detection and isolation of faults and failures in flight control systems are crucial to avoid negative impacts on human and environmental systems, and to the system itself. In this study, a new scheme based on a nonlinear dynamic model is designed for sensor fault detection and isolation in an unmanned aerial vehicle (UAV) system. In the proposed design, a neural network is used as an observer for faults in the UAV sensors. The weighting parameters of the neural network are updated by the Extended Kalman Filter (EKF). The designed fault detection (FD) system is applied to an unmanned quadrotor model, and the simulation results show that the proposed design is capable of the prompt detection of sensor faults.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Heredia, G., Ollero, A.: Detection of sensor faults in small helicopter UAVs using observer/Kalman filter identification. Math. Probl. Eng. 2011 (2011)

  2. 2.

    Yin, S., Xiao, B., Ding, S.X., Zhou, D.: A review on recent development of spacecraft attitude fault tolerant control system. IEEE Trans. Ind. Electron. 63, 3311–3320 (2016)

    Article  Google Scholar 

  3. 3.

    Chen, Y., Yang, J., Xu, Y., Jiang, S., Liu, X., Wang, Q.: Status self-validation of sensor arrays using gray forecasting model and bootstrap method. IEEE Trans. Instrum. Meas. 65, 1626–1640 (2016)

    Article  Google Scholar 

  4. 4.

    Pourbabaee, B., Meskin, N., Khorasani, K.: Sensor fault detection, isolation, and identification using multiple-model-based hybrid Kalman filter for gas turbine engines. IEEE Trans. Control Syst. Technol. 24, 1184–1200 (2016)

    Article  Google Scholar 

  5. 5.

    Li, X.-J., Yang, G.-H.: Fault detection for T–S fuzzy systems with unknown membership functions. IEEE Trans. Fuzzy Syst. 22, 139–152 (2014)

    Article  Google Scholar 

  6. 6.

    Yang, G.-H., Wang, H.: Fault detection and isolation for a class of uncertain state-feedback fuzzy control systems. IEEE Trans. Fuzzy Syst. 23, 139–151 (2015)

    Article  Google Scholar 

  7. 7.

    de Loza, A.F., Cieslak, J., Henry, D., Dávila, J., Zolghadri, A.: Sensor fault diagnosis using a non-homogeneous high-order sliding mode observer with application to a transport aircraft. IET Control Theory Appl. 9, 598–607 (2015)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Fallaha, C.J., Saad, M., Kanaan, H.Y., Al-Haddad, K.: Sliding-mode robot control with exponential reaching law. IEEE Trans. Ind. Electron. 58, 600–610 (2011)

    Article  Google Scholar 

  9. 9.

    Henry, D.: Fault diagnosis of microscope satellite thrusters using H-infinity/H_ filters. J. Guid. Control. Dyn. 31, 699–711 (2008)

    Article  Google Scholar 

  10. 10.

    Freeman, P., Pandita, R., Srivastava, N., Balas, G.J.: Model-based and data-driven fault detection performance for a small UAV. IEEE/ASME Trans. Mechatron. 18, 1300–1309 (2013)

    Article  Google Scholar 

  11. 11.

    He, W., Dong, Y., Sun, C.: Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Trans. Syst. Man Cybern. Syst. Hum. 46, 334–344 (2016)

    Article  Google Scholar 

  12. 12.

    He, W., David, A.O., Yin, Z., Sun, C.: Neural network control of a robotic manipulator with input deadzone and output constraint. IEEE Trans. Syst. Man Cybern. Syst. Hum. 46, 759–770 (2016)

    Article  Google Scholar 

  13. 13.

    He, W., Chen, Y., Yin, Z.: Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Trans. Cybern. 46, 620–629 (2016)

    Article  Google Scholar 

  14. 14.

    Talebi, H., Patel, R.: An intelligent fault detection and recovery scheme for reaction wheel actuator of satellite attitude control systems. In: 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control, pp. 3282–3287 (2006)

  15. 15.

    Tao, G., Chen, S., Joshi, S.M.: An adaptive actuator failure compensation controller using output feedback. IEEE Trans. Autom. Control 47, 506–511 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Samy, I., Postlethwaite, I., Gu, D.-W.: Survey and application of sensor fault detection and isolation schemes. Control. Eng. Pract. 19, 658–674 (2011)

    Article  Google Scholar 

  17. 17.

    Talebi, H.A., Khorasani, K., Tafazoli, S.: A recurrent neural-network-based sensor and actuator fault detection and isolation for nonlinear systems with application to the satellite’s attitude control subsystem. IEEE Trans. Neural Netw. 20, 45–60 (2009)

    Article  Google Scholar 

  18. 18.

    Khorasgani, H.G., Menhaj, M.B., Talebi, H., Bakhtiari-Nejad, F.: Neural-network-based sensor fault detection & isolation for nonlinear hybrid systems. IFAC Proc. Vol. 45, 1029–1034 (2012)

    Article  Google Scholar 

  19. 19.

    Wu, Q., Saif, M.: Neural adaptive observer based fault detection and identification for satellite attitude control systems. In: Proceedings of the 2005, American Control Conference 2005, pp. 1054–1059 (2005)

  20. 20.

    Hussain, S., Mokhtar, M., Howe, J.M.: Sensor failure detection, identification, and accommodation using fully connected cascade neural network. IEEE Trans. Ind. Electron. 62, 1683–1692 (2015)

    Article  Google Scholar 

  21. 21.

    Chen, M., Shi, P., Lim, C.-C.: Adaptive neural fault-tolerant control of a 3-DOF model helicopter system. IEEE Trans. Syst. Man Cybern. Syst. Hum. 46, 260–270 (2016)

    Article  Google Scholar 

  22. 22.

    Shen, Q., Jiang, B., Shi, P., Lim, C.-C.: Novel neural networks-based fault tolerant control scheme with fault alarm. IEEE Trans. Cybern. 44, 2190–2201 (2014)

    Article  Google Scholar 

  23. 23.

    Abbaspour, A., Aboutalebi, P., Yen, K.K., Sargolzaei, A.: Neural adaptive observer-based sensor and actuator fault detection in nonlinear systems: application in UAV. ISA Trans. 67, 317–329 (2017)

    Article  Google Scholar 

  24. 24.

    Abaspour, A., Sadati, S.H., Sadeghi, M.: Nonlinear optimized adaptive trajectory control of helicopter. Control Theory Technol. 13, 297–310 (2015)

    Article  MATH  Google Scholar 

  25. 25.

    Ljung, L., Soderstrom, T.: Theory and Practice of Recursive Identification. MIT Press, Cambridge (1983)

    MATH  Google Scholar 

  26. 26.

    Sadeghzadeh, I., Zhang, Y.: A review on fault-tolerant control for unmanned aerial vehicles (UAVs). Infotech@ Aerospace, St. Louis (2011)

    Book  Google Scholar 

  27. 27.

    Wang, L., He, Y., Zhang, Z., He, C.: Trajectory tracking of quadrotor aerial robot using improved dynamic inversion method. Intell. Control. Autom. 4, 343 (2013)

    Article  Google Scholar 

  28. 28.

    Quan, Q., Du, G.-X., Cai, K.-Y.: Proportional-integral stabilizing control of a class of MIMO systems subject to nonparametric uncertainties by additive-state-decomposition dynamic inversion design. IEEE/ASME Trans. Mechatron. 21, 1092–1101 (2016)

    Article  Google Scholar 

  29. 29.

    Smeur, E.J., Chu, Q., de Croon, G.C.: Adaptive incremental nonlinear dynamic inversion for attitude control of micro air vehicles. J. Guid. Control. Dyn. 38, 450–461 (2015)

    Google Scholar 

  30. 30.

    Reiner, J., Balas, G.J., Garrard, W.L.: Robust dynamic inversion for control of highly maneuverable aircraft. J. Guid. Control. Dyn. 18, 18–24 (1995)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alireza Abbaspour.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aboutalebi, P., Abbaspour, A., Forouzannezhad, P. et al. A Novel Sensor Fault Detection in an Unmanned Quadrotor Based on Adaptive Neural Observer. J Intell Robot Syst 90, 473–484 (2018). https://doi.org/10.1007/s10846-017-0690-7

Download citation

Keywords

  • Malfunction
  • Sensor
  • Flight dynamic
  • Nonlinear model
  • Control
  • Extended Kalman Filter