Multi-Target Motion Planning Amidst Obstacles for Autonomous Aerial and Ground Vehicles

Article
  • 74 Downloads

Abstract

The motion planning problem of a single autonomous vehicle having a minimum turn radius constraint, visiting an ordered sequence of targets in an environment with polygonal obstacles, is addressed. Two types of vehicles are considered: aerial/ground vehicle - described by the Dubins/Reeds-Shepp vehicle models, respectively. The problem is posed in the form of a search tree by using the obstacles’ vertices, vehicle’s initial configuration, and the set of target points as nodes. The tree’s arcs are represented by the Dubins/Reed-Shepp paths without terminal angle constraint (relaxed paths) connecting two adjacent nodes. These relaxed paths - connecting an initial configuration and a destination, are calculated using a feedback algorithm. Due to the computational complexity of the problem a genetic algorithm is proposed. Additionally, two deterministic search algorithms are presented. A quick heuristic greedy algorithm which uses the visibility graph distances for estimating the remaining vehicle path and an exhaustive algorithm which provides optimal solution trajectories. The performance of the algorithms is demonstrated and compared through sample runs and a Monte Carlo study. Results confirm that the heuristic algorithm provides relatively good solution for a small radius turn vehicle, while the genetic algorithm offers a good trade-off between computational load and performance.

Keywords

Motion planning Obstacles Tree search Genetic algorithm Unmanned vehicles Dubins vehicle Reeds-Shepp vehicle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The research was partially supported by Israel Aerospace Industries.

References

  1. 1.
    Agarwal, P.K., Wang, H.: Approximation algorithms for curvature-constrained shortest paths. SIAM J. Comput. 30(6), 1739–1772 (2001).  https://doi.org/10.1137/S0097539796307790 MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Akhil, G., Ratnoo, A., Ghose, D.: A modified dubins problem with partially restricted terminal conditions. In: Proceedings of the IEEE International Conference on Control Applications, pp 877–882. Hyderabad, India (2013),  https://doi.org/10.1109/CCA.2013.6662861
  3. 3.
    Backer, J., Kirkpatrick, D.: A complete approximation algorithm for shortest bounded-curvature paths. In: Proceedings of the 19th International Symposium on Algorithms and Computation, pp 628–643. Surfers Paradise, Australia (2008),  https://doi.org/10.1007/978-3-540-92182-0_56
  4. 4.
    Boissonnat, J.D., Bui, X.N.: Accessibility region for a car that only move forward along optimal paths. Research Report INRIA 2181. INRIA Sophia-Antipolis, France (1994)Google Scholar
  5. 5.
    Chakravarthy, A., Ghose, D.: Obstacle avoidance in a dynamic environment: A collision cone approach. IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans 28(5), 562–574 (1998).  https://doi.org/10.1109/3468.709600 CrossRefGoogle Scholar
  6. 6.
    Cobano, J.A., Conde, R., Alejo, D., Ollero, A.: Path planning based on genetic algorithms and the monte-carlo method to avoid aerial vehicle collisions under uncertainties. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp 4429–4434. Shanghai, China (2011)Google Scholar
  7. 7.
    Desaulniers, G.: On shortest paths for a car-like robot maneuvering around obstacles. Robot. Autonom. Syst. 17, 139–148 (1996).  https://doi.org/10.1016/0921-8890(96)80512-4 CrossRefGoogle Scholar
  8. 8.
    Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Amer. J. Math. 79, 497–516 (1957).  https://doi.org/10.2307/2372560 MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Edison, E., Shima, T.: Integrated task assignment and path optimization for cooperating uninhabited aerial vehicles using genetic algorithms. Comput. Oper. Res. 38(1), 340–356 (2011).  https://doi.org/10.1016/j.cor.2010.06.001 MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Goerzen, C., Kong, Z., Mettler, B.: A survey of motion planning algorithms from the perspective of autonomous UAV guidance. J. Intell. Robot. Syst. 57(1), 65–100 (2010).  https://doi.org/10.1007/s10846-009-9383-1 CrossRefMATHGoogle Scholar
  11. 11.
    Gottlieb, Y., Shima, T.: UAVs task and motion planning in the presence of obstacles and prioritized targets. Sensors 15(11), 29,734 (2015).  https://doi.org/10.3390/s151129734. http://www.mdpi.com/1424-8220/15/11/29734 CrossRefGoogle Scholar
  12. 12.
    Henrich, D.: Fast motion planning by parallel processing–a review. J. Intell. Robot. Syst. 20(1), 45–69 (1997).  https://doi.org/10.1023/A:1007948727999 CrossRefGoogle Scholar
  13. 13.
    Isaiah, P., Shima, T.: Motion planning algorithms for the dubins travelling salesperson problem. Automatica 53, 247–255 (2015).  https://doi.org/10.1016/j.automatica.2014.12.041 MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Jacobs, P., Canny, J.: Planning smooth paths for mobile robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp 2–7. Scottsdale, Arizona (1989),  https://doi.org/10.1007/978-1-4615-3176-0_8
  15. 15.
    Karaman, S., Frazzoli, E.: Optimal kinodynamic motion planning using incremental sampling-based methods. In: Proceedings of the IEEE Conference on Decision and Control, pp 7681–7687. Atlanta, USA (2010)Google Scholar
  16. 16.
    Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30(7), 846–894 (2011).  https://doi.org/10.1177/0278364911406761 CrossRefMATHGoogle Scholar
  17. 17.
    Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996).  https://doi.org/10.1109/70.508439 CrossRefGoogle Scholar
  18. 18.
    Laumond, J.P., Jacobs, P., Taix, M., Murray, R.: A motion planner for non-holonomic mobile robot. IEEE Trans. Robot. Autom. 10(5), 577–593 (1994).  https://doi.org/10.1109/70.326564 CrossRefGoogle Scholar
  19. 19.
    LaValle, S., Kuffner, J.: Randomized kinodynamic planning. Int. J. Robot. Res. 20(5), 378–400 (2001).  https://doi.org/10.1177/02783640122067453 CrossRefGoogle Scholar
  20. 20.
    LaValle, S.M.: Robot motion planning: A game-theoretic foundation. Algorithmica 26(3–4), 430–465 (2000).  https://doi.org/10.1007/s004539910020 MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    LaValle, S.M., Kuffner, J.J.: Rapidly-exploring random trees: progress and prospects. In: Donald, BR, Lynch, K M, Rus, D (eds.) Algorithmic and Computational Robotics: New Directions, pp 293–308. A K Peters, Wellesley (2001)Google Scholar
  22. 22.
    Le Ny, J., Frazzoli, E., Feron, E.: The curvature-constrained traveling salesman problem for high point densities. In: Proceedings of the 46th IEEE Conference on Decision and Control, pp 5985–5990. New Orleans, Louisiana (2007),  https://doi.org/10.1109/CDC.2007.4434503
  23. 23.
    Lee, J.H., Cheong, O., Kwon, W.C., Shin, S.Y., Chwa, K.Y.: Approximation of curvature-constrained shortest paths through a sequence of points. In: Paterson, M S (ed.) Algorithms - ESA 2000: 8th Annual European Symposium Saarbrücken, Germany, September 5–8 2000 Proceedings, pp 314–325. Springer, Berlin (2000),  https://doi.org/10.1007/3-540-45253-2_29
  24. 24.
    Lee, T.L., Wu, C.J.: Fuzzy motion planning of mobile robots in unknown environments. J. Intell. Robot. Syst. 37(2), 177–191 (2003).  https://doi.org/10.1023/A:1024145608826 CrossRefGoogle Scholar
  25. 25.
    Ma, X., Castanon, D.A.: Receding horizon planning for Dubins traveling salesman problems. In: Proceedings of the IEEE Conference on Decision and Control, pp 5453–5458. CA, San Diego (2006)),  https://doi.org/10.1109/CDC.2006.376928
  26. 26.
    Maza, I., Kondak, K., Bernard, M., Ollero, A.: Multi-UAV cooperation and control for load transportation and deployment. J. Intell. Robot. Syst. 57(1-4), 417–449 (2010).  https://doi.org/10.1007/s10846-009-9352-8 CrossRefMATHGoogle Scholar
  27. 27.
    Oberlin, P., Rathinam, S., Darbha, S.: A transformation for a heterogeneous, multiple depot, multiple traveling salesman problem. In: Proceedings of the 2009 American Control Conference, pp 1292–1297. Missouri, St. Louis (2009),  https://doi.org/10.1109/ACC.2009.5160666
  28. 28.
    Park, J.W., Oh, H.D., Tahk, M.J.: UAV collision avoidance based on geometric approach. In: Proceedings of the SICE Annual Conference 2008, pp 2122–2126. Chofu, Tokyo (2008),  https://doi.org/10.1109/SICE.2008.4655013
  29. 29.
    Rasmussen, S.J., Shima, T.: Tree search algorithm for assigning cooperating UAVs to multiple tasks. Int. J. Robust Nonlinear Control 18(2), 135–153 (2008).  https://doi.org/10.1002/rnc.1257 MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Sengupta, R.R.S., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Trans. Autom. Sci. Eng. 4.  https://doi.org/10.1109/TASE.2006.872110 (2007)
  31. 31.
    Ratnoo, A., Sujit, P., Kothari, M.: Adaptive optimal path following for high wind flights. In: Proceedings of the 18th IFAC World Congress, vol. 2. Italy, Milano (2011)Google Scholar
  32. 32.
    Ratnoo, A., Hayoun, S.Y., Granot, A., Shima, T.: Path following using trajectory shaping guidance. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference. Boston, Massachusetts (2013).  https://doi.org/10.2514/6.2013-5233
  33. 33.
    Reeds, J.A., Shepp, L.A.: Optimal paths for a car that goes both forwards and backwards. Pac. J. Math. 145(2), 367–393 (1990).  https://doi.org/10.2140/pjm.1990.145.367 MathSciNetCrossRefGoogle Scholar
  34. 34.
    Reif, J., Wang, H.: The complexity of the two dimensional curvature-constrained shortest-path problem. In: Proceedings of the third Workshop on the Algorithmic Foundations of Robotics on Robotics: the Algorithmic Perspective, pp 49–57. MA, Natick (1998)Google Scholar
  35. 35.
    Savla, K., Frazzoli, E., Bullo, F.: On the point-to-point and traveling salesperson problems for dubins vehicle. In: Proceedings of the Americal Control Conference, pp 786–791. Portland, USA (2005),  https://doi.org/10.1109/ACC.2005.1470055
  36. 36.
    Shaferman, V., Shima, T.: Unmanned aerial vehicles cooperative tracking of moving ground target in urban environments. AIAA J. Guid. Control Dynam. 31(5), 1360–1371 (2008).  https://doi.org/10.2514/1.33721 CrossRefGoogle Scholar
  37. 37.
    Shanmugavel, M., Tsourdos, A., White, B., Zbikowski, R.: Co-operative path planning of multiple UAVs using dubins paths with clothoid arcs. Control Eng. Pract. 18(9), 1084–1092 (2010).  https://doi.org/10.1016/j.conengprac.2009.02.010 CrossRefGoogle Scholar
  38. 38.
    Soueres, P., Fourquet, J.Y., Laumond, J.P.: Set of reachable positions for a car. IEEE Trans. Autom. Control 39, 1626–1630 (1994).  https://doi.org/10.1109/9.310037 MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Sujit, P., Beard, R.: Multiple UAV path planning using anytime algorithms. In: Proceedings of the 2009 American Control Conference, pp 2978–2983. Missouri, St. Louis (2009),  https://doi.org/10.1109/ACC.2009.5160222
  40. 40.
    Sujit, P., Sinha, A., Ghose, D.: Multiple UAV task allocation using negotiation. In: Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems, pp 471–478. Hakodate, Japan (2006),  https://doi.org/10.1145/1160633.1160719
  41. 41.
    Sussmann, H., Tang, G.: Shortest paths for the reeds-shepp car: A worked out example of the use of geometric techniques in nonlinear optimal control. Tech. Rep. SYNCON 91-10, Department of Mathematics. Rutgers University, Piscataway (1991)Google Scholar
  42. 42.
    Tang, Z., Ozguner, U.: Motion planning for multitarget surveillance with mobile sensor agents. IEEE Trans. Robot. 21, 898–908 (2005).  https://doi.org/10.1109/TRO.2005.847567 CrossRefGoogle Scholar
  43. 43.
    Wong, H., Kapila, V., Vaidyanathan, R.: UAV optimal path planning using C-C-C class paths for target touring. In: Proceedings of the IEEE Conference on Decision and Control, pp 1105– 1110. Atlantis, Bahamas (2004),  https://doi.org/10.1109/CDC.2004.1428840
  44. 44.
    Yang, G., Kapila, V.: Optimal path planning for unmanned air vehicles with kinematic and tactical constraints. In: Proceedings of the IEEE Conference on Decision and Control, pp 1301–1306. Las Vegas, USA (2002),  https://doi.org/10.1109/CDC.2002.1184695

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringTechnion—Israel Institute of TechnologyHaifaIsrael
  2. 2.Department of Aerospace EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations