Blackboard Architecture for Detecting and Notifying Failures for Component-Based Unmanned Systems

  • Michael E. Shin
  • Taeghyun Kang
  • Sunghoon Kim


This paper describes the blackboard architecture that is capable of detecting the component failures/recoveries in the component-based unmanned systems and notifying them to the associated components. The blackboard architecture monitors each component of the system in order to detect its failures/recoveries at runtime and identify the causes of failures. Using the dependency relationships between components, the blackboard architecture performs impact analysis so that it determines the scope of failure/recovery notification in the components of the system. The notification messages delivered to the components can trigger safety actions against the failures. The prototypes of blackboard architecture have been developed for Microsoft Robotics Developer Studio (MSRDS) based unmanned systems and Robot Operating System (ROS) based unmanned systems. The prototypes are used to validate the blackboard architecture with an unmanned ground vehicle (UGV) system and a patrolling robot system as case studies.


Blackboard architecture Detection Notification Component Unmanned system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Industrial Foundation Technology Development Program of MKE/KEIT [10044006, Development of Open Robot Middleware Supporting User-Friend Developer Tools and Standard Robot API Components].


  1. 1.
    Gomaa, H.: Designing Concurrent, Distributed, and Real-Time Applications with UML. Addison-Wesley Inc., Boston, Reading (2000)Google Scholar
  2. 2.
    Pfleeger, S.L., Atlee, J.M.: Software engineering theory and practice, 3rd edn. Prentice-Hall, Englewood Cliffs (2006)Google Scholar
  3. 3.
    Crnkovic, I.: Component-Based Approach for Embedded Systems. IEEE Press, New York (2004)Google Scholar
  4. 4.
    Brugali, D., Scandurra, P.: Component-based robotic engineering. IEEE Robot. Autom. Mag. 16(4), 84–96 (2009)CrossRefGoogle Scholar
  5. 5.
    Jackson, J.: Microsoft robotics studio: a technical introduction. IEEE Robot. Autom. Mag. 14(4), 82–87 (2007)CrossRefGoogle Scholar
  6. 6.
    Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, A.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, Kobe, Japan (2009)Google Scholar
  7. 7.
    OMG, The robot technology component specification, available at: (2012)
  8. 8.
    Soetens, P.: The OROCOS (Open Robot Control Software) Component Builder’s Manual Version 1.10.2 (2007)Google Scholar
  9. 9.
    Enderle, S., Utz, H., Sablatnog, S., Simon, S., Kraetzschmar, G., Palm, G.: MIRO: middleware for autonomous mobile robots. In: Telematics Applications in Automation and Robotics (2001)Google Scholar
  10. 10.
    Utz, H., Sablatnog, S., Enderle, S., Kraetzschmar, G.: Miro-middleware for mobile robot application. IEEE Trans. Robot. Autom. 18(4), 493–497 (2002)CrossRefzbMATHGoogle Scholar
  11. 11.
    Ando, N., Suehiro, T., Kitagaki, K., Kotoku, T.: RT-middleware: distributed component middleware for RT. In: IEEE/RSJ International Conference on Robots and Intelligent Systems, pp. 3555–3560 (2005)Google Scholar
  12. 12.
    Song, B., Jung, S., Jang, C., Kim, S.: An introduction to robot component model for OPROS (open platform for robotic services). In: International Conference on Simulation, Modeling, and Programming for Autonomous Robots, Venice, Italy (2008)Google Scholar
  13. 13.
    Jang, C., Lee, S., Jung, S., Song, B., Kim, R., Kim, S., Lee, C.: OPROS: a new component-based robot software platform. ETRI J. 32(5), 646–656 (2010)CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Shin, M.E., Kang, T., Kim, S., Jung, S., Roh, M.: Reconfiguration of robot applications using data dependency and impact analysis. In: 24th International Conference on Software Engineering and Knowledge Engineering, San Francisco (2012)Google Scholar
  16. 16.
    Wei, H., Duan, X., Li, S., Tong, G., Wang, T.: A component based design framework for robot software architecture. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS09), St. Louis, USA (2009)Google Scholar
  17. 17.
    Åkerholm, M., Möller, A., Hansson, H., Nolin, M.: Towards a dependable component technology for embedded system applications. In: 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems, Sedona, Arizona, USA (2005)Google Scholar
  18. 18.
    Biggs, G.: Flexible, adaptable utility components for component-based robot software. In: IEEE International Conference on Robotics and Automation, Anchorage, Alaska (2010)Google Scholar
  19. 19.
    Brooks, A.T., Kaupp, A., Makarenko, A., Williams, S., Oreback, A.: Towards component-based robotics. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS05), Alberta, Canada, p. 2005 (2005)Google Scholar
  20. 20.
    IRObot create, available at: (2011)
  21. 21.
    Steinbauer, G., Morth, M., Wotawa, F.: Real-time diagnosis and repair of faults of robot control software. In: Robotcup 2005: Robot Soccer World Cup IX, LNCS, vol. 4020, pp. 13–23 (2006)Google Scholar
  22. 22.
    Hofbaur, M., Kob, J., Steinbauer, G., Wotawa, F.: Improving robustness of mobile robots using model-based reasoning. J. Intell. Robot. Syst. 48(1), 37–54 (2007)CrossRefGoogle Scholar
  23. 23.
    Demetriou, G.A.: A survey of sensors for localization of unmanned ground vehicles (UGVs). In: International Conference on Artificial Intelligence (ICAI), Las Vegas, NV, USA, vol. 2, pp. 659–668 (2006)Google Scholar
  24. 24.
    Galluzzo, T., Kent, D.: The OpenJAUS approach to designing and implementing the new sae JAUS standards. In: AUVSI Unmanned Systems Conference, Denver/Colorado, USA (2010)Google Scholar
  25. 25.
    Upcroft, B., Ridley, M., Ong, L.L., Douillard, B., Kaupp, T., Kumar, S., Bailey, T., Ramos, F., Makarenko, A., Brooks, A., Sukkarieh, S., Durrant-Whyte, H.F.: Multilevel state estimation in an outdoor decentralized sensor network. In: 10th International Symposium on Experimental Robotics, Rio De Janiero (2006)Google Scholar
  26. 26.
    Mohamed, N., Al-Jaroodi, J., Jawhar, I., Lazarova-Molnar, S.: A service-oriented middleware for building collaborative UAVs. J. Intell. Robot. Syst. 74(1-2), 309–321 (2014)CrossRefGoogle Scholar
  27. 27.
    Paunicka, J.L., Corman, D.E., Mendel, B.R.A.: CORBA-based middleware solution for UAVs. In: Fourth International Symposium on Object-Oriented Real-Time Distributed Computing, Magdeburg, Germany, pp. 261–267 (2001)Google Scholar
  28. 28.
    Committee on Army Unmanned Ground Vehicle Technology: Technology Development for Army Unmanned Ground Vehicles. National Academies Press (2002)Google Scholar
  29. 29.
    Edwards, G., Deng, G., Schmidt, D.C., Gorkhale, A., Natarajan, B.: Model-driven configuration and deployment of component middleware publish/subscribe services. GPCE 2004. LNCS 3286, 337–360 (2004)Google Scholar
  30. 30.
    LEGO Mindstorms, available at: (2015)
  31. 31.
    Oh, B.J., Bae, Y.S., Moon, K.D., Ha, Y.G.: An error messages clustering-based fault management framework for adaptive home network middleware. IEEE Trans. Consum. Electron. 56(1), 63–69 (2010)CrossRefGoogle Scholar
  32. 32.
    Ahn, H., Lee, D., Ahn, S.C.: Hierarchical fault tolerant architecture for component-based service robots. In: 8th IEEE International Conference on Industrial Informatics, Osaka, pp. 487–492 (2010)Google Scholar
  33. 33.
    Shin, M.E., Kang, T., Kim, S.: Detection and notification of failures in distributed component-based robot applications using blackboard architecture. In: International Symposium on Distributed Autonomous Robotic Systems (DARS 2014), Daejeon, Korea (2014)Google Scholar
  34. 34.
    Rumbaugh, J., Booch, G., Jacobson, I.: The Unified Modeling Language Reference Manual, 2nd edn. Addison-Wesley Inc., Boston, Reading (2004)Google Scholar
  35. 35.
    Realpe, M., Vintimilla, B.X., Vlacic, L.: Fault tolerant perception system for autonomous vehicles. In: 35th Chinese Control Conference (CCC2016), Chengdu, China (2016)Google Scholar
  36. 36.
    Kim, J., Rajkumar, R.R., Jochim, M.: Towards dependable autonomous driving vehicles: a system-level approach. ACM SIGBED Review 10(1), 29–32 (2013)CrossRefGoogle Scholar
  37. 37.
    Sun, C., He, W., Ge, W., Chang, C.: Adaptive neural network control of biped robots. IEEE Trans. Syst. Man Cybern. Syst. 47(2), 315–326 (2017)Google Scholar
  38. 38.
    He, W., Ouyang, Y., Hong, J.: Vibration control of a flexible robotic manipulator in the presence of input deadzone. IEEE Trans. Ind. Inf. 13(1), 48–59 (2017)CrossRefGoogle Scholar
  39. 39.
    He, W., Dong, Y.: Adaptive fuzzy neural network control for a constrained robot using impedance learning. IEEE Transactions on Neural Networks and Learning Systems PP(99), 1–13 (2017)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceTexas Tech UniversityLubbockUSA
  2. 2.Department of Computer ScienceUniversity of Central MissouriWarrensburgUSA
  3. 3.Intelligent Robotics Research DivisionETRIDaejeonKorea

Personalised recommendations