Skip to main content
Log in

Perpetual Robot Swarm: Long-Term Autonomy of Mobile Robots Using On-the-fly Inductive Charging

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Swarm robotics studies the intelligent collective behaviour emerging from long-term interactions of large number of simple robots. However, maintaining a large number of robots operational for long time periods requires significant battery capacity, which is an issue for small robots. Therefore, re-charging systems such as automated battery-swapping stations have been implemented. These systems require that the robots interrupt, albeit shortly, their activity, which influences the swarm behaviour. In this paper, a low-cost on-the-fly wireless charging system, composed of several charging cells, is proposed for use in swarm robotic research studies. To determine the system’s ability to support perpetual swarm operation, a probabilistic model that takes into account the swarm size, robot behaviour and charging area configuration, is outlined. Based on the model, a prototype system with 12 charging cells and a small mobile robot, Mona, was developed. A series of long-term experiments with different arenas and behavioural configurations indicated the model’s accuracy and demonstrated the system’s ability to support perpetual operation of multi-robotic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gerling, K., Hebesberger, D., Dondrup, C., Körtner, T., Hanheide, M.: Robot deployment in long-term care. Zeitschrift für Gerontologie und Geriatrie 49(4), 288–297 (2016)

    Article  Google Scholar 

  2. Hebesberger, D., Koertner, T., Gisinger, C., Pripfl, J., Dondrup, C.: Lessons learned from the deployment of a long-term autonomous robot as companion in physical therapy for older adults with dementia: a mixed methods study. In: 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2016)

  3. Bayindir, L.: A review of swarm robotics tasks. Neurocomputing 172, 292–321 (2016)

    Article  Google Scholar 

  4. Şahin, E.: Swarm robotics: from sources of inspiration to domains of application. In: International Workshop on Swarm Robotics, pp. 10–20. Springer (2004)

  5. Valentini, G., Ferrante, E., Hamann, H., Dorigo, M.: Collective decision with 100 kilobots: speed versus accuracy in binary discrimination problems. Auton. Agent. Multi-Agent Syst. 30(3), 553–580 (2016)

    Article  Google Scholar 

  6. Arvin, F., Murray, J.C., Shi, L., Zhang, C., Yue, S.: Development of an autonomous micro robot for swarm robotics. In: IEEE International Conference on Mechatronics and Automation (ICMA), pp. 635–640 (2014)

  7. Turgut, A.E., Çelikkanat, H., Gökçe, F., Sahin, E.: Self-organized flocking in mobile robot swarms. Swarm Intell. 2(2), 97–120 (2008)

    Article  Google Scholar 

  8. McLurkin, J., Smith, J., Frankel, J., Sotkowitz, D., Blau, D., Schmidt, B.: Speaking swarmish: human-robot interface design for large swarms of autonomous mobile robots. In: AAAI Spring Symposium (2006)

  9. Santos, J.M., Krajník, T., Fentanes, J.P., Duckett, T.: Lifelong information-driven exploration to complete and refine 4-D spatio-temporal maps. IEEE Robotics and Automation Letters 1(2), 684–691 (2016)

    Article  Google Scholar 

  10. Bonani, M., Longchamp, V., Magnenat, S., Rétornaz, P., Burnier, D., Roulet, G., Vaussard, F., Bleuler, H., Mondada, F.: The Marxbot, a miniature mobile robot opening new perspectives for the collective-robotic research. In: IROS (2010)

  11. Floreano, D., Mondada, F.: Automatic creation of an autonomous agent: genetic evolution of a neural network driven robot. In: 3rd International Conference on Simulation of Adaptive Behavior: From Animals to Animats 3 (1994)

  12. Watson, R.A., Ficiei, S., Pollack, J. B.: Embodied evolution: embodying an evolutionary algorithm in a population of robots. In: Congress on Evolutionary Computation (1999)

  13. Winfield, A.F., Nembrini, J.: Emergent swarm morphology control of wireless networked mobile robots. In: Morphogenetic Engineering (2012)

    Chapter  Google Scholar 

  14. Krieger, M.J., Billeter, J.-B., Keller, L.: Ant-like task allocation and recruitment in cooperative robots. Nature 406(6799), 992–995 (2000)

    Article  Google Scholar 

  15. Klingner, J., Kanakia, A., Farrow, N., Reishus, D., Correll, N.: A stick-slip omnidirectional drive-train for low-cost swarm robotics: mechanism, calibration, and control. In: IROS (2014)

  16. Takaya, Y.U., Arita, T.: Situated and embodied evolution in collective evolutionary robotics. In: International Symposium on Artificial Life and Robotics (2003)

  17. Arvin, F., Krajník, T., Turgut, A.E., Yue, S.: COS F: Artificial Pheromone System for Robotic Swarms Research. In: IROS (2015)

  18. Deyle, T., Reynolds, M.: Surface based wireless power transmission and bidirectional communication for autonomous robot swarms. In: ICRA (2008)

  19. Karpelson, M., et al.: A wirelessly powered, biologically inspired ambulatory microrobot. In: ICRA (2014)

  20. Zhang, Z., Xu, X., Li, B., Deng, B.: An energy-encrypted contactless charging system for swarm robots. In: Magnetics Conference (INTERMAG) (2015)

  21. Caprari, G., Estier, T., Siegwart, R.: Fascination of down scaling - alice the sugar cube robot. Journal of Micro-Mechatronics 1(3), 177–189 (2002)

    Google Scholar 

  22. Arvin, F., Samsudin, K., Ramli, A. R.: Development of a miniature robot for swarm robotic application. International Journal of Computer and Electrical Engineering 1, 436–442 (2009)

    Article  Google Scholar 

  23. Arvin, F., Murray, J., Zhang, C., Yue, S.: Colias: an autonomous micro robot for swarm robotic applications. Int. J. Adv. Robot. Syst. 11(113), 1–10 (2014)

    Google Scholar 

  24. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J. -C., Floreano, D., Martinoli, A.: The e-puck, a robot designed for education in engineering. In: 9th Conference on Autonomous Robot Systems and Competitions (2009)

  25. Dorigo, M., Floreano, D., Gambardella, L. M., Mondada, F., Nolfi, S., Baaboura, T., Birattari, M., Bonani, M., Brambilla, M., Brutschy, A., et al.: Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IEEE Robot. Autom. Mag. 20(4), 60–71 (2013)

    Article  Google Scholar 

  26. Kernbach, S., Thenius, R., Kernbach, O., Schmickl, T.: Re-embodiment of honeybee aggregation behavior in an artificial micro-robotic system. Adapt. Behav. 17(3), 237–259 (2009)

    Article  Google Scholar 

  27. Mondada, F., Franzi, E., Ienne, P.: Mobile robot miniaturisation: a tool for investigation in control algorithms. In: Experimental Robotics III (1994)

  28. Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., Nagpal, R.: Kilobot: a low cost robot with scalable operations designed for collective behaviors. Robot. Auton. Syst. 62(7), 966–975 (2014)

    Article  Google Scholar 

  29. Mondada, F., Pettinaro, G.C., Guignard, A., Kwee, I.W., Floreano, D., Deneubourg, J. -L., Nolfi, S., Gambardella, L. M., Dorigo, M.: Swarm-bot: a new distributed robotic concept. Auton. Robot. 17(2–3), 193–221 (2004)

    Article  Google Scholar 

  30. Caprari, G., Siegwart, R.: Mobile micro-robots ready to use: Alice. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3295–3300. IEEE (2005)

  31. Schmickl, T., Thenius, R., Moeslinger, C., Radspieler, G., Kernbach, S., Szymanski, M., Crailsheim, K.: Get in touch: cooperative decision making based on robot-to-robot collisions. Auton. Agent. Multi-Agent Syst. 18(1), 133–155 (2009)

    Article  Google Scholar 

  32. Walter, W.G.: The Living Brain. Norton, New York (1953)

    Google Scholar 

  33. Yuta, S., Hada, Y.: Long term activity of the autonomous robot-proposal of a bench-mark problem for the autonomy. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp 1871–1878 (1998)

  34. Roufas, K., Zhang, Y., Duff, D., Yim, M.: Six degree of freedom sensing for docking using ir led emitters and receivers. In: Experimental Robotics VII, pp. 91–100. Springer (2001)

  35. Minten, B.W., Murphy, R.R., Hyams, J., Micire, M.: Low-order-complexity vision-based docking. IEEE Trans. Robot. Autom. 17(6), 922–930 (2001)

    Article  Google Scholar 

  36. Krajník, T., Nitsche, M., Faigl, J., Vanek, P., Saska, M., Preucil, L., Duckett, T., Mejail, M.: A practical multirobot localization system. J. Intell. Robot. Syst. 76(3–4), 539–562 (2014)

    Article  Google Scholar 

  37. Arvin, F., Samsudin, K., Ramli, A.R.: Swarm robots long term autonomy using moveable charger. In: International Conference on Future Computer and Communication, pp. 127–130. IEEE (2009)

  38. Attarzadeh, A.: Development of advanced power management for autonomous micro-robots. Master’s thesis, University of Stuttgart, Germany (2006)

  39. Martinoli, A., Franzi, E., Matthey, O.: Towards a reliable set-up for bio-inspired collective experiments with real robots. In: Experimental Robotics V, pp. 595–608. Springer (1998)

  40. Wei, X., Wang, Z., Dai, H.: A critical review of wireless power transfer via strongly coupled magnetic resonances. Energies 7(7), 4316–4341 (2014)

    Article  Google Scholar 

  41. Lu, X., Wang, P., Niyato, D., Kim, D.I., Han, Z.: Wireless charging technologies: Fundamentals, standards, and network applications. IEEE Commun. Surv. Tutorials 18, 1413–1452 (2015)

    Article  Google Scholar 

  42. Lu, X., Wang, P., Niyato, D., Kim, D.I., Han, Z.: Wireless networks with RF energy harvesting: a contemporary survey. IEEE Commun. Surv. Tutorials 17(2), 757–789 (2015)

    Article  Google Scholar 

  43. Cannon, B., Hoburg, J., Stancil, D., Goldstein, S.: Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers. IEEE Trans. Power Electron. 24(7), 1819–1825 (2009)

    Article  Google Scholar 

  44. Chen, C.J., Chu, T.H., Lin, C.L., Jou, Z.C.: A study of loosely coupled coils for wireless power transfer. IEEE Trans. Circuits Syst. Express Briefs 57(7), 536–540 (2010)

    Article  Google Scholar 

  45. Zhong, W., Lee, C.K., Hui, S.Y.: Wireless power domino-resonator systems with noncoaxial axes and circular structures. IEEE Trans. Power Electron. 27(11), 4750–4762 (2012)

    Article  Google Scholar 

  46. Hu, C., Arvin, F., Xiong, C., Yue, S.: A bio-inspired embedded vision system for autonomous micro-robots: the LGMD case. IEEE Transactions on Cognitive and Developmental Systems 9(3), 241–254 (2016)

    Article  Google Scholar 

  47. Arvin, F., Bekravi, M.: Encoderless position estimation and error correction techniques for miniature mobile robots. Turk. J. Electr. Eng. Comput. Sci. 21, 1631–1645 (2013)

    Article  Google Scholar 

  48. Arvin, F., Samsudin, K., Ramli, A.R.: Development of IR-based short-range communication techniques for swarm robot applications. Advances in Electrical and Computer Engineering 10(4), 61–68 (2010)

    Article  Google Scholar 

  49. Krajník, T., Nitsche, M., Faigl, J., Duckett, T., Mejail, M., Preucil, L.: External localization system for mobile robotics. In: 16Th International Conference on Advanced Robotics (ICAR), pp. 1–6. IEEE (2013)

  50. Ahmad, F.A., Ramli, A.R., Samsudin, K., Hashim, S.J.: Optimization of power utilization in multimobile robot foraging behavior inspired by honeybees system. Scientific World Journal 2014, 1–12 (2014)

    Google Scholar 

  51. Arvin, F., Turgut, A.E., Krajník, T., Yue, S.: Investigation of cue-based aggregation in static and dynamic environments with a mobile robot swarm. Adapt. Behav. 24(2), 102–118 (2016)

    Article  Google Scholar 

  52. Ferrante, E., Turgut, A.E., Duéñez-Guzmán, E., Dorigo, M., Wenseleers, T.: Evolution of self-organized task specialization in robot swarms. PLoS Comput Biol 11(8), e1004273 (2015)

    Article  Google Scholar 

  53. Arvin, F., Turgut, A.E., Bazyari, F., Arikan, K.B., Bellotto, N., Yue, S.: Cue-based aggregation with a mobile robot swarm: a novel fuzzy-based method. Adapt. Behav. 22(3), 189–206 (2014)

    Article  Google Scholar 

  54. Arvin, F., Samsudin, K., Ramli, A. R., Bekravi, M.: Imitation of honeybee aggregation with collective behavior of swarm robots. International Journal of Computational Intelligence Systems 4(4), 739–748 (2011)

    Google Scholar 

  55. Neter, J., Kutner, M.H., Nachtsheim, C.J., Wasserman, W.: Applied Linear Statistical Models, vol. 4. Irwin, Chicago (1996)

    Google Scholar 

  56. Correll, N., Martinoli, A.: Modeling self-organized aggregation in a swarm of miniature robots. In: IEEE International Conference on Robotics and Automation, Workshop on Collective Behaviors Inspired by Biological and Biochemical Systems (2007)

  57. Martinoli, A., Ijspeert, A., Mondada, F.: Understanding collective aggregation mechanisms: from probabilistic modelling to experiments with real robots. Robot. Auton. Syst. 29(1), 51–63 (1999)

    Article  Google Scholar 

  58. Soysal, O., Sahin, E.: A macroscopic model for self-organized aggregation in swarm robotic systems. In: Sahin, E., Spears, W., Winfield, A. (eds.) Swarm Robotics, Ser. Lecture Notes in Computer Science, vol. 4433, pp 27–42 (2007)

  59. Bayindir, L., Sahin, E.: Modeling self-organized aggregation in swarm robotic systems. In: Swarm Intelligence Symposium, pp. 88–95. IEEE (2009)

  60. Hamann, H.: Space-time continuous models of swarm robotics systems: Supporting global-to-local programming. Ph.D. dissertation, Department of Computer Science, University of Karlsruhe (2008)

  61. Schmickl, T., Hamann, H., Worn, H., Crailsheim, K.: Two different approaches to a macroscopic model of a bio-inspired robotic swarm. Robot. Auton. Syst. 57(9), 913–921 (2009)

    Article  Google Scholar 

  62. Arvin, F., Attar, A., Turgut, A., Yue, S.: Power-law distribution of long-term experimental data in swarm robotics. In: Tan, Y., Shi, Y., Buarque, F., Gelbukh, A., Das, S., Engelbrecht, A. (eds.) Advances in Swarm and Computational Intelligence, Ser. Lecture Notes in Computer Science, vol. 9140, pp 551–559 (2015)

    Chapter  Google Scholar 

  63. Taheri, P., Mansouri, A., Schweitzer, B., Yazdanpour, M., Bahrami, M.: Electrical constriction resistance in current collectors of large-scale lithium-ion batteries. J. Electrochem. Soc. 160(10), A1731–A1740 (2013)

    Article  Google Scholar 

  64. Senyshyn, A., Mühlbauer, M., Dolotko, O., Hofmann, M., Ehrenberg, H.: Homogeneity of lithium distribution in cylinder-type li-ion batteries. Sci. Rep. 5, 18380 (2015)

    Article  Google Scholar 

  65. Garnier, S., Gautrais, J., Asadpour, M., Jost, C., Theraulaz, G.: Self-Organized Aggregation triggers collective decision making in a group of cockroach-like robots. Adapt. Behav. 17(2), 109–133 (2009)

    Article  Google Scholar 

  66. Jeanson, R., Rivault, C., Deneubourg, J. -L., Blanco, S., Fournier, R., Jost, C., Theraulaz, G.: Self-organized aggregation in cockroaches. Anim. Behav. 69(1), 169–180 (2005)

    Article  Google Scholar 

  67. Liwanag, H., Oraze, J., Costa, D., Williams, T.: Thermal benefits of aggregation in a large marine endotherm: huddling in california sea lions. J. Zool. 293(3), 152–159 (2014)

    Article  Google Scholar 

  68. Arvin, F., Turgut, A.E., Bellotto, N., Yue, S.: Comparison of different cue-based swarm aggregation strategies. In: Advances in Swarm Intelligence, Ser. Lecture Notes in Computer Science, vol. 8794, pp 1–8 (2014)

    Google Scholar 

  69. Arvin, F., Turgut, A.E., Yue, S.: Fuzzy-based aggregation with a mobile robot swarm. In: Swarm Intelligence, Ser. Lecture Notes in Computer Science, vol. 7461, pp 346–347 (2012)

    Google Scholar 

Download references

Acknowledgments

This work was supported by Innovate UK (Project No. KTP009811), UK EPSRC (Reference: EP/P01366X/1) and Czech Science Foundation project 17-27006Y.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshad Arvin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arvin, F., Watson, S., Turgut, A.E. et al. Perpetual Robot Swarm: Long-Term Autonomy of Mobile Robots Using On-the-fly Inductive Charging. J Intell Robot Syst 92, 395–412 (2018). https://doi.org/10.1007/s10846-017-0673-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0673-8

Keywords

Navigation