Topology Synthesis and Optimal Design of an Adaptive Compliant Gripper to Maximize Output Displacement

  • Chih-Hsing Liu
  • Guo-Feng Huang
  • Chen-Hua Chiu
  • Tzu-Yang Pai


This paper presents the optimal design process of an innovative adaptive compliant gripper (ACG) for fast handling of objects with size and shape variations. An efficient soft-add topology optimization algorithm is developed to synthesize the optimal topology of the ACG. Unlike traditional hard-kill and soft-kill methods, the elements are equivalent to be numerically added into the analysis domain through the proposed soft-add scheme. A size optimization method incorporating Augmented Lagrange Multiplier (ALM) method, Simplex method, and nonlinear finite element analysis with the objective to maximize geometric advantage (which is defined as the ratio of output displacement to input displacement) of the analyzed compliant mechanism is carried out to optimize the design. The dynamic performance and contact behavior of the ACG is analyzed by using explicit dynamic finite element analysis. Three designs are prototyped using silicon rubber material. Experimental tests are performed, and the results agree well with the simulation models. The outcomes of this study provide numerical methods for design and analysis of compliant mechanisms with better computational efficiency, as well as to develop an innovative adaptive compliant gripper for fast grasping of unknown objects.


Gripper Compliant mechanism Topology optimization Size optimization Geometric advantage 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was supported by the grants: MOST 103-2218-E-006-012, and MOST 105-2221-E-006-082 from the Ministry of Science and Technology of Taiwan.


  1. 1.
    Xie, Y.M., Steven, G.P.: Evolutionary Structural Optimization. Springer (1997)Google Scholar
  2. 2.
    Bendsøe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods and Applications. Springer, Berlin (2003)zbMATHGoogle Scholar
  3. 3.
    Huang, X., Xie, Y.M.: Evolutionary Topology Optimization of Continuum Structures: Methods and Applications. Wiley (2010)Google Scholar
  4. 4.
    Huang, X., Xie, Y.M.: Convergent and mesh-independent solutions for the bidirectional evolutionary structural optimization method. Finite Elem. Anal. Des. 43, 1039–1049 (2007)CrossRefGoogle Scholar
  5. 5.
    Huang, X., Xie, Y.M.: A further review of ESO type methods for topology optimization. Struct. Multidiscip. Optim. 41(5), 671–683 (2010)CrossRefGoogle Scholar
  6. 6.
    Li, Y., Huang, X., Xie, Y.M., Zhou, S.: Bi-directional evolutionary structural optimization for design of compliant mechanisms. Key Eng. Mater. 535-536, 373–376 (2013)CrossRefGoogle Scholar
  7. 7.
    Alonso, C., Querin, O.M., Ansola, R.: A sequential element rejection and admission (SERA) method for compliant mechanisms design. Struct. Multidiscip. Optim. 47(6), 795–807 (2013)CrossRefGoogle Scholar
  8. 8.
    Alonso, C., Ansola, R., Querin, O.M.: Topology synthesis of multi-material compliant mechanisms with a sequential element rejection and admission method. Finite Elem. Anal. Des. 85, 11–19 (2014)CrossRefGoogle Scholar
  9. 9.
    Sigmund, O., Petersson, J.: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural Optimization 16(1), 68–75 (1998)CrossRefGoogle Scholar
  10. 10.
    Sigmund, O.: Morphology-based black and white filters for topology optimization. Struct. Multidiscip. Optim. 33, 401–424 (2007)CrossRefGoogle Scholar
  11. 11.
    Ansola, R., Veguería, E., Maturana, A., Canales, J.: 3D compliant mechanisms synthesis by a finite element addition procedure. Finite Elem. Anal. Des. 46(9), 760–769 (2010)CrossRefGoogle Scholar
  12. 12.
    Wang, M.Y.: Mechanical and geometric advantages in compliant mechanism optimization. Front. Mech. Eng. China 4, 229–241 (2009)CrossRefGoogle Scholar
  13. 13.
    Zhou, H., Killekar, P.P.: The modified quadrilateral discretization model for the topology optimization of compliant mechanisms. ASME J. Mech. Des. 133(11), 111007–111007-9 (2011)CrossRefGoogle Scholar
  14. 14.
    Zhu, B., Zhang, X., Fatikow, S.: Level set-based topology optimization of hinge-free compliant mechanisms using a two-step elastic modeling method. ASME J. Mech. Des. 136(3), 031007 (2014)CrossRefGoogle Scholar
  15. 15.
    Cao, L., Dolovich, A.T., Zhang, W.: Hybrid compliant mechanism design using a mixed mesh of flexure hinge elements and beam elements through topology optimization. ASME J. Mech. Des. 137(9), 092303 (2015)CrossRefGoogle Scholar
  16. 16.
    Rahmatalla, S., Swan, C.C.: Sparse monolithic compliant mechanisms using continuum structural topology optimization. Int. J. Numer. Methods Eng. 62(12), 1579–1605 (2005)CrossRefzbMATHGoogle Scholar
  17. 17.
    Pedersen, C.B.W., Buhl, T., Sigmund, O.: Topology synthesis of large-displacement compliant mechanisms. Int. J. Numer. Methods Eng. 50(12), 2683–2705 (2001)CrossRefzbMATHGoogle Scholar
  18. 18.
    Zhou, H.: Topology optimization of compliant mechanisms using hybrid discretization model. ASME J. Mech. Des. 132(11), 111003–111003-8 (2010)CrossRefGoogle Scholar
  19. 19.
    Liu, C.-H., Huang, G.-F.: A topology optimization method with constant volume fraction during iterations for design of compliant mechanisms. ASME J. Mech. Robot. 8(4), 044505 (2016)CrossRefGoogle Scholar
  20. 20.
    Jin, M., Zhang, X.: A new topology optimization method for planar compliant parallel mechanisms. Mech. Mach. Theory 95, 42–58 (2016)CrossRefGoogle Scholar
  21. 21.
    Pedersen, C.B., Fleck, N.A., Ananthasuresh, G.K.: Design of a compliant mechanism to modify an actuator characteristic to deliver a constant output force. ASME J. Mech. Des. 128(5), 1101–1112 (2006)CrossRefGoogle Scholar
  22. 22.
    Sigmund, O.: Design of multiphysics actuators using topology optimization – Part I: one-material structures. Comput. Methods Appl. Mech. Eng. 190(49–50), 6577–6604 (2001)CrossRefzbMATHGoogle Scholar
  23. 23.
    Sigmund, O.: Design of multiphysics actuators using topology optimization – Part II: two-material structures. Comput. Methods Appl. Mech. Eng. 190(49–50), 6605–6627 (2001)CrossRefzbMATHGoogle Scholar
  24. 24.
    Yoon, G.H.: Topological layout design of electro-fluid-thermal-compliant actuator. Comput. Methods Appl. Mech. Eng. 209–212, 28–44 (2012)CrossRefGoogle Scholar
  25. 25.
    Gonçalves, J.F., De Leon, D.M., Perondi, E.A.: Topology optimization of embedded piezoelectric actuators considering control spillover effects. J. Sound Vib. 388, 20–41 (2017)CrossRefGoogle Scholar
  26. 26.
    Frecker, M.I., Ananthasuresh, G.K., Nishiwaki, S., Kikuchi, N., Kota, S.: Topological synthesis of compliant mechanisms using multi-criteria optimization. ASME J. Mech. Des. 119(2), 238–245 (1997)CrossRefGoogle Scholar
  27. 27.
    Lu, K., Kota, S.: Topology and dimensional synthesis of compliant mechanisms using discrete optimization. ASME J. Mech. Des. 128(5), 1080–1091 (2006)CrossRefGoogle Scholar
  28. 28.
    Petković, D., Pavlović, N.D., Shamshirband, S., Badrul Anuar, N.: Development of a new type of passively adaptive compliant gripper. Industrial Robot: An International Journal 40, 610–623 (2013)CrossRefGoogle Scholar
  29. 29.
    Birglen, L., Laliberté, T., Gosselin, C.: Underactuated Robotic Hands. Springer (2008)Google Scholar
  30. 30.
    Odhner, L.U., Jentoft, L.P., Claffee, M.R., Corson, N., Tenzer, Y., Ma, R.R., Buehler, M., Kohout, R., Howe, R.D., Dollar, A.M.: A compliant, underactuated hand for robust manipulation. Int. J. Robot. Res. 33(5), 736–752 (2014)CrossRefGoogle Scholar
  31. 31.
    Deimel, R., Brock, O.: A novel type of compliant and underactuated robotic hand for dexterous grasping. Int. J. Robot. Res. 35(1-3), 161–185 (2016)CrossRefGoogle Scholar
  32. 32.
    She, Y., Chen, J., Shi, H., Su, H.-J.: Modeling and validation of a novel bending actuator for soft robotics applications. Soft Rob. 3(2), 71–81 (2016)CrossRefGoogle Scholar
  33. 33.
    Manti, M., Hassan, T., Passetti, G., D’Elia, N., Laschi, C., Cianchetti, M.: A bioinspired soft robotic gripper for adaptable and effective grasping. Soft Rob. 2(3), 107–116 (2015)CrossRefGoogle Scholar
  34. 34.
    Montambault, S., Gosselin, C.M.: Analysis of underactuated mechanical grippers. ASME J. Mech. Des. 123, 367–374 (2001)CrossRefGoogle Scholar
  35. 35.
    Doria, M., Birglen, L.: Design of an underactuated compliant gripper for surgery using nitinol. ASME J. Med. Devices 3(1), 011007–1-7 (2009)CrossRefGoogle Scholar
  36. 36.
    Petković, D., Shamshirband, S., Anuar, N.B., Sabri, A.Q.M., Rahman, Z.B.A., Pavlović, N.D.: Input displacement neuro-fuzzy control and object recognition by compliant multi-fingered passively adaptive robotic gripper. J. Intell. Robot. Syst. 82, 177–187 (2016)CrossRefGoogle Scholar
  37. 37.
    Chen, D., Liu, Z., von Wichert, G.: Uncertainty-aware arm-base coordinated grasping strategies for mobile manipulation. J. Intell. Robot. Syst. 80(Supplement 1), 205–223 (2015)CrossRefGoogle Scholar
  38. 38.
    Chua, P.Y., Ilschner, T., Caldwell, D.G.: Robotic manipulation of food products - a review. Industrial Robot: An International Journal 30(4), 345–354 (2003)CrossRefGoogle Scholar
  39. 39.
    Pettersson, A., Davis, S., Gray, J.O., Dodd, T.J., Ohlsson, T.: Design of a magnetorheological robot gripper for handling of delicate food products with varying shapes. J. Food Eng. 98(3), 332–338 (2010)CrossRefGoogle Scholar
  40. 40.
    Pettersson, A., Ohlsson, T., Davis, S., Gray, J.O., Dodd, T.J.: A hygienically designed force gripper for flexible handling of variable and easily damaged natural food products. Innovative Food Sci. Emerg. Technol. 12(3), 344–351 (2011)CrossRefGoogle Scholar
  41. 41.
    Lee, K.-M.: Design criteria for developing an automated live-bird transfer system. IEEE Trans. Robot. Autom. 17(4), 483–490 (2001)CrossRefGoogle Scholar
  42. 42.
    Liu, C.-H., Lee, K.-M.: Dynamic modeling of damping effects in highly damped compliant fingers for applications involving contacts. ASME J. Dyn. Syst. Meas. Control. 134, 011005–1~9 (2012)CrossRefGoogle Scholar
  43. 43.
    Lee, K.-M., Liu, C.-H.: Explicit dynamic finite element analysis of an automated grasping process using highly damped compliant fingers. Comput. Math. Appl. 64(5), 965–977 (2012)CrossRefGoogle Scholar
  44. 44.
    Rao, S.S.: Engineering Optimization: Theory and Practice, 4th edn. Wiley (2009)Google Scholar
  45. 45.
    Liu, C.-H., Chen, W., Su, W., Sun, C.-N.: Numerical and experimental analysis of the automated demolding process for PDMS microfluidic devices with high-aspect ratio micropillars. Int. J. Adv. Manuf. Technol. 80(1), 401–409 (2015)CrossRefGoogle Scholar
  46. 46.
    Liu, C.-H., Huang, Y.-C., Chiu, C.-H., Lai, Y.-C., Pai, T.-Y.: Design and analysis of automotive bumper covers in transient loading conditions. Key Eng. Mater. 715, 174–179 (2016)CrossRefGoogle Scholar
  47. 47.
    Liu, C.-H., Lai, Y.-C., Chiu, C.-H., Lin, M.-H.: Interior head impact analysis of automotive instrument panel for unrestrained front seat passengers. Key Eng. Mater. 715, 186–191 (2016)CrossRefGoogle Scholar
  48. 48.
    Sigmund, O.: A 99 line topology optimization code written in Matlab. Struct. Multidiscip. Optim. 21, 120–127 (2001)CrossRefGoogle Scholar
  49. 49.
    Andreassen, E., Clausen, A., Schevenels, M., Lazarov, B.S., Sigmund, O.: Efficient topology optimization in MATLAB using 88 lines of code. Struct. Multidiscip. Optim. 43(1), 1–16 (2011)CrossRefzbMATHGoogle Scholar
  50. 50.
    Sigmund, O.: On the design of compliant mechanisms using topology optimization. Mech. Struct. Mach. 25(4), 493–524 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Chih-Hsing Liu
    • 1
  • Guo-Feng Huang
    • 1
  • Chen-Hua Chiu
    • 1
  • Tzu-Yang Pai
    • 1
  1. 1.Department of Mechanical EngineeringNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations