Piecewise Trajectory Replanner for Highway Collision Avoidance Systems with Safe-Distance Based Threat Assessment Strategy and Nonlinear Model Predictive Control

  • Umar Zakir Abdul Hamid
  • Mohd Hatta Mohammed Ariff
  • Hairi Zamzuri
  • Yuichi Saito
  • Muhammad Aizzat Zakaria
  • Mohd Azizi Abdul Rahman
  • Pongsathorn Raksincharoensak


This paper proposes an emergency Trajectory Replanner (TR) for collision avoidance (CA) which works based on a Safe-Distance Based Threat Assessment Strategy (SDTA). The contribution of this work is the design of a piecewise-kinematic based TR, where it replans the path by avoiding the invisible rectangular region created by SDTA. The TR performance is measured by assessing its ability to yield a maneuverable path for lane change and lane keeping navigations of the host vehicle. The reliability of the TR is evaluated in multi-scenario computational simulations. In addition, the TR is expected to provide a reliable replanned path during the increased nonlinearity of high-speed collisions. For this reason, Nonlinear Model Predictive Control (NMPC) is adopted into the design to track the replanned trajectory via an active front steering and braking actuations. For path tracking strategy, comparisons with benchmark controllers are done to analyze NMPC’s reliability as multi-actuators nonlinear controller of the architecture to the CA performance in high-speed scenario. To reduce the complexity of the NMPC formulation, Move Blocking strategy is incorporated into the control design. Results show that the CA system performed well in emergency situations, where the vehicle successfully replanned the obstacle avoidance trajectory, produced dependable lane change and lane keeping navigations, and at the same time no side-collision with the obstacle’s edges occurred. Moreover, the multi-actuators and nonlinear features of NMPC as the PT strategy gave a better tracking performance in high-speed CA scenario. Assimilation of Move Blocking strategy into NMPC formulation lessened the computational burden of NMPC. The system is proven to provide reliable replanned trajectories and preventing multi-scenario collision risks while maintaining the safe distance and time constraints.


Collision avoidance High speed collision Path planning Nonlinear model Model predictive control Active safety 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work presented in this study is funded by Ministry of Higher Education, Malaysia and Research University Grant, Universiti Teknologi Malaysia. VOTE NO: 13H73. This work is also supported by PROTON Holdings Berhad.


  1. 1.
    Fleming, W.: Forty-Year Review of Automotive Electronics: A Unique Source of Historical Information on Automotive Electronics. In: IEEE vehicular technology maga-zine. 10th edn., (3), pp. 80–90. IEEE, Piscataway (2015)Google Scholar
  2. 2.
    Raksincharoensak, P., Hasegawa, T., Nagai, M.: Motion Planning and Control of Autonomous Driving Intelligence System Based on Risk Potential Optimization Framework . In: International Journal of Automotive Engineering (7) AVEC14, pp. 53–60 (2016)Google Scholar
  3. 3.
    Ramli, R., Oxley, J., Noor, F.M., Abdullah, N.K., Mahmood, M.S., Tajuddin, A.K., McClure, R.: Fatal injuries among motorcyclists in Klang Valley, Malaysia. J. Forensic Legal Med. 26, 39–45 (2014). ElsevierCrossRefGoogle Scholar
  4. 4.
    Mustafa, M.N.: Overview of current road safety situation in Malaysia (Highway planning Unit, Road Safety Section, Ministry of Works) (2005)Google Scholar
  5. 5.
    Long, A.D., Kloeden, C.N., Hutchinson, P., McLean, J.: Reduction of speed limit from 110 km/h to 100 km/h on certain roads in South Australia: a preliminary evaluation, Centre for Automotive Safety Research (2006)Google Scholar
  6. 6.
    Insurance Institute for Highway Safety (Highway Loss Data Institute), Low- and medium-speed vehicles in IIHS Site retrieved on 18th October 2016
  7. 7.
    Insurance Institute for Highway Safety (Highway Loss Data Institute), Speed and Speed Limits in IIHS Site retrieved on 18th October 2016
  8. 8.
    Official Portal of Road Transport Department Malaysia, Speed Limits for Malaysian Highway retrieved on 18th October 2016
  9. 9.
    Wierwille, W.W., Wreggit, S.S., Kirn, C.L., Ellsworth, L.A., Fairbanks, R.J.: Research on Vehicle-Based Driver Status/Performance Monitoring; Development, Validation, and Refinement of Algorithms for Detection of Driver Drowsiness. Final Report, Virginia Polytechnic Institute and State University, Blacksburg (1994)Google Scholar
  10. 10.
    Kim, S.Y., Kang, J.K., Oh, S.Y., Ryu, Y.W., Kim, K., Park, S.C., Kim, J.: An intelligent and integrated driver assistance system for increased safety and convenience based on all-around sensing. J. Intell. Robot. Syst. 51(3), 261–287 (2008)CrossRefGoogle Scholar
  11. 11.
    Vahidi, A., Eskandarian, A.: Research advances in intelligent collision avoidance and adaptive cruise control. IEEE Trans. Intell. Transp. Syst. 4(3), 143–153 (2003). (IEEE)CrossRefGoogle Scholar
  12. 12.
    National Transportation Safety Board. (2016) NTSB unveils 2016 most wanted list, stresses technology in [Online] Available:
  13. 13.
    Saito, Y., Raksincharoensak, P.: Risk predictive shared deceleration control: Its functionality and effectiveness of an early intervention support. In: 2016 IEEE intelligent vehicles symposium (IV), pp. 49–54. IEEE, Piscataway (2016)Google Scholar
  14. 14.
    Hayashi, R., Isogai, J., Raksincharoensak, P., Nagai, M.: Autonomous collision avoidance system by combined control of steering and braking using geometrically optimised vehicular trajectory. In: Vehicle system dynamics. 50th edn., (sup1), pp. 151–168. Taylor & Francis, Milton Park (2012)Google Scholar
  15. 15.
    Wongwaiwit, P., Raksincharoensak, P., Michitsuji, Y.: Analysis on Pedestrian and Bicycle Behavior in Unsignalized Intersection Based on Near-Miss Incident Database . In: Proceedings of 20th JSME transportation and logistics conference, pp. 19–22 (2011)Google Scholar
  16. 16.
    Ariff, M.H., Zamzuri, H., Nordin, M.A., Yahya, W.J., Mazlan, S.A., Rahman, M.A.: Optimal control strategy for low speed and high speed four-wheel-active steering vehicle. In: Journal of Mechanical Engineering and Sciences. (UMP), vol. 8, pp. 1516–1528 (2015)Google Scholar
  17. 17.
    Shim, T., Adireddy, G., Yuan, H.: Autonomous vehicle collision avoidance system using path planning and model-predictive-control-based active front steering and wheel torque control. In: Proceedings of the institution of mechanical engineers, part D: journal of automobile engineering, pp. 767–778. Sage Publications, Thousand Oaks (2012)Google Scholar
  18. 18.
    Carvalho, A., Lefévre, S., Schildbach, G., Kong, J., Borrelli, F.: Automated driving: The role of forecasts and uncertainty — A control perspective. In: European Journal of Control, vol. 24, pp. 14–32. Elsevier, Amsterdam (2015)Google Scholar
  19. 19.
    Ahmad, F., Khisbullah, H., Harun, M.H.: Pneumatically actuated active suspension system for reducing vehicle dive and squat. In: Jurnal mekanikal. (UTM), vol. 28, pp. 85–114 (2009)Google Scholar
  20. 20.
    Kutluay, E., Winner, H.: Validation of vehicle dynamics simulation models–a review. Veh. Syst. Dyn. 52 (2), 186–200 (2014)CrossRefGoogle Scholar
  21. 21.
    Stallmann, M.J., Els, P.S.: Parameterization and modelling of large off-road tyres for ride analyses: Part 2–Parameterization and validation of tyre models. In: Journal of Terramechanics, vol. 55, pp. 85–94. Elsevier, Amsterdam (2014)Google Scholar
  22. 22.
    Pacejka, H.: Tire and vehicle dynamics. Elsevier, Amsterdam (2005)Google Scholar
  23. 23.
    Turri, V., Carvalho, A., Tseng, H.E., Johansson, K.H., Borrelli, F.: Linear model predictive control for lane keeping and obstacle avoidance on low curvature roads. In: 16th international IEEE conference on intelligent transportation systems (ITSC 2013), pp. 378–383. IEEE, Piscataway (2013)Google Scholar
  24. 24.
    Gray, A., Ali, M., Gao, Y., Hedrick, J.K., Borrelli, F.: Integrated threat assessment and control design for roadway departure avoidance. In: 2012 15th international ieee conference on intelligent transportation systems (ITSC), pp. 1714–1719. IEEE, Piscataway (2012)Google Scholar
  25. 25.
    Gray, A., Ali, M., Gao, Y., Hedrick, J.K., Borrelli, F. : A unified approach to threat assessment and control for automotive active safety. IEEE Trans. Intell. Transp. Syst. 14(3), 1490–1499 (2013)CrossRefGoogle Scholar
  26. 26.
    Hamid, U.Z.A., Zamzuri, H., Raksincharoensak, P., Rahman, M.A.A.: Analysis of Vehicle Collision Avoidance using Model Predictive Control with Threat Assessment. In: 23rd ITS world congress 2016 (Melbourne). (2016)
  27. 27.
    Hamid, U.Z.A., Zamzuri, H., Rahman, M.A., Yahya, W.J.: A Safe-Distance Based Threat Assessment with Geometrical Based Steering Control for Vehicle Collision Avoidance. In: Journal of telecommunication, electronic and computer engineering (JTEC), 8th edn. (2). UTEM, pp. 53–58 (2016)Google Scholar
  28. 28.
    Shah, J., Best, M., Benmimoun, A., Ayat, M.L.: Autonomous rear-end collision avoidance using an electric power steering system. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 229(12), 1638–1655 (2015). (SAGE)Google Scholar
  29. 29.
    Savino, G., Pierini, M., Baldanzini, N.: Decision logic of an active braking system for powered two wheelers. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 226 (8), 1026–1036 (2012). (SAGE)Google Scholar
  30. 30.
    Chen, Y.-L.: Study on a novel forward collision probability index. Int. J. Veh. Saf. 8(3), 193–204 (2015). (Inderscience Publishers (IEL))CrossRefGoogle Scholar
  31. 31.
    Huang, S.: Autonomous intelligent cruise control with actuator delays. J. Intell. Robot. Syst. 23(1), 27–43 (1998). SpringerCrossRefzbMATHGoogle Scholar
  32. 32.
    Raja, P., Pugazhenthi, S.: Optimal path planning of mobile robots: A review. International Journal of Physical Sciences 7(9), 1314–1320 (2012). Academic JournalsCrossRefGoogle Scholar
  33. 33.
    Polden, J., Pan, Z., Larkin, N., van Duin, S.: Adaptive Partial Shortcuts: Path Optimization for Industrial Robotics. In: Journal of Intelligent & Robotic Systems. Springer, pp. 1–13, Berlin (2015)Google Scholar
  34. 34.
    Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 79(3), 497–516 (1957). (JSTOR)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Zips, P., Böck, M., Kugi, A.: Optimisation based path planning for car parking in narrow environments. Robot. Auton. Syst. 79, 1–11 (2016). ElsevierCrossRefGoogle Scholar
  36. 36.
    Cheein, F.A., Scaglia, G.: Trajectory tracking controller design for unmanned vehicles: A new methodology. J. Field Rob. 31(6), 861–887 (2014). Wiley Online LibraryCrossRefGoogle Scholar
  37. 37.
    Zakaria, M.A., Zamzuri, H., Mazlan, S.A.: Dynamic Curvature Steering Control for Autonomous Vehicle: Performance Analysis. IOP Conference Series: Materials Science and Engineering 114(1), 012149 (2016). IOP PublishingCrossRefGoogle Scholar
  38. 38.
    Camacho, E.F., Alba, C.B.: Model predictive control. Springer Science & Business Media, Berlin (2013)Google Scholar
  39. 39.
    Rahmani, B.: Industrial Internet of Things: Design and Stabilization of Nonlinear Automation Systems. In: Journal of Intelligent & Robotic Systems, pp. 1–13. Springer, Berlin (2016)Google Scholar
  40. 40.
    Yakub, F., Mori, Y.: Comparative study of autonomous path-following vehicle control via model predictive control and linear quadratic control. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of automobile engineering 229(12), 1695–1714 (2015). (Sage Publications)Google Scholar
  41. 41.
    Magni, L. , Scattolini, R. : An overview of nonlinear model predictive control. In: Automotive model predictive control, pp. 107–117. Springer, Berlin (2010)Google Scholar
  42. 42.
    Shekhar, R.C., Maciejowski, J.M.: Robust variable horizon MPC with move blocking. Syst. Control Lett. 61(4), 587–594 (2012). (Elsevier)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Lee, J., Nam, Y., Hong, S., Cho, W.: New potential functions with random force algorithms using potential field method. J. Intell. Robot. Syst. 66(3), 303–319 (2012). (Springer)CrossRefGoogle Scholar
  44. 44.
    Al-Sultan, K.S., Aliyu, M.D.: A new potential field-based algorithm for path planning. J. Intell. Robot. Syst. 17(3), 265–282 (1996). (Springer)CrossRefGoogle Scholar
  45. 45.
    Alonso-Mora, J., Naegeli, T., Siegwart, R., Beardsley, P.: Collision avoidance for aerial vehicles in multi-agent scenarios. Auton. Robot. 39(1), 101–121 (2015). SpringerCrossRefGoogle Scholar
  46. 46.
    Pacejka, H.B. , Bakker, E.: The magic formula tyre model. Veh. Syst. Dyn. 21(S1), 1–18 (1992). (Taylor & Francis)CrossRefGoogle Scholar
  47. 47.
    Buckholtz, K.R.: Use of fuzzy logic in wheel slip assignment–Part I: yaw rate control. In: SAE world congress (2002-01). (Citeseer), p. 1221 (2002)Google Scholar
  48. 48.
    Prestero, T.T.J.: Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle (PhD Thesis), pp. 1–18. Massachusetts institute of technology, Cambridge (2001)CrossRefGoogle Scholar
  49. 49.
    Ali, M., Gsray, A., Gao, Y., Hedrick, J.K., Borrelli, F.: Multi-Objective Collision Avoidance. In: ASME 2013 dynamic systems and control conference, pp. V003T47A004–V003T47A004. American Society of Mechanical Engineers, New York (2013)Google Scholar
  50. 50.
    Lefèvre, S., Vasquez, D., Laugier, C.: A survey on motion prediction and risk assessment for intelligent vehicles. Robomech Journal 1(1), 1 (2014). (Springer International Publishing)CrossRefGoogle Scholar
  51. 51.
    Lee, D., Han, K., Huh, K.: Collision detection system design using a multi-layer laser scanner for collision mitigation. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of automobile engineering 226 (7), 905–914 (2015). (SAGE Publications)Google Scholar
  52. 52.
    Althoff, M., Mergel, A.: Comparison of Markov chain abstraction and Monte Carlo simulation for the safety assessment of autonomous cars. IEEE Trans. Intell. Transp. Syst. 12(4), 1237–1247 (2011). IEEECrossRefGoogle Scholar
  53. 53.
    Thiel, C., Schmidt, J., Van Zyl, A., Schmid, E.: Cost and well-to-wheel implications of the vehicle fleet CO 2 emission regulation in the European Union. Transp. Res. A Policy Pract. 63, 25–42 (2014). ElsevierCrossRefGoogle Scholar
  54. 54.
    Sfetcu, N.: The Car Show. Lulu Press, ISBN: 9781447876359, Morrisville (2011)Google Scholar
  55. 55.
    Sørbø, E.H.: Vehicle Collision Avoidance System (Thesis). Norwegian University of Science and Technology – Institutt for teknisk kybernetikk, Trondheim (2013)Google Scholar
  56. 56.
    Brimberg, J.: Properties of Distance Functions and Minisum Location Models (Thesis). McMaster University), Hamilton (1989)Google Scholar
  57. 57.
    Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In: The International Journal of Robotics Research. 5th edn., (1), pp. 90–98. SAGE, Newcastle upon Tyne (1986)Google Scholar
  58. 58.
    Schmitt, S., Le Bars, F., Jaulin, L., Latzel, T.: Obstacle avoidance for an autonomous marine Robot—A vector field approach. In: Quantitative monitoring of the underwater environment, pp. 119–131. Elsevier, Amsterdam (2016)Google Scholar
  59. 59.
    Vilca, J.M., Adouane, L., Mezouar, Y.: Optimal Multi-Criteria Waypoint Selection for Autonomous Vehicle Navigation in Structured Environment. J. Intell. Robot. Syst. 82(2), 301–324 (2016). SpringerCrossRefGoogle Scholar
  60. 60.
    Vehicle Stopping Distance and Time in National Association of City Transportation Officials sites, retrieved on 24th April 2017
  61. 61.
    Attia, R., Orjuela, R., Basset, M. : Combined longitudinal and lateral control for automated vehicle guidance. Veh. Syst. Dyn. 52(2), 261–279 (2014). (Taylor & Francis)CrossRefGoogle Scholar
  62. 62.
    Longo, S., Kerrigan, E.C., Ling, K.V., Constantinides, G.A.: Parallel move blocking model predictive control. In: 2011 50th IEEE conference on decision and control and european control conference, pp. 1239–1244. IEEE, Piscataway (2011)Google Scholar
  63. 63.
    Norén, C.: Path Planning for Autonomous Heavy Duty Vehicles Using Nonlinear Model Predictive Control. PhD Thesis, Linköpings Universitet (2013)Google Scholar
  64. 64.
    Cagienard, R., Grieder, P., Kerrigan, E.C., Morari, M.: Move blocking strategies in receding horizon control. J. Process Control 17(6), 563–570 (2007). (Elsevier)CrossRefGoogle Scholar
  65. 65.
    Mikuláš, O.: A framework for nonlinear model predictive control. 2016 Thesis Czech technical university in Prague (2016)Google Scholar
  66. 66.
    Zakaria, M.A., Zamzuri, H., Mamat, R., Mazlan, S.A.: A path tracking algorithm using future prediction control with spike detection for an autonomous vehicle robot. In: International Journal of Advanced Robotic Systems, vol. 10. InTech, Rijeka (2013)Google Scholar
  67. 67.
    Garriga, J.L., Soroush, M.: Model predictive control tuning methods: A review. Ind. Eng. Chem. Res. 49(8), 3505–3515 (2010). (ACS Publications)CrossRefGoogle Scholar
  68. 68.
    Joe, H., Xu, J.J.: The estimation method of inference functions for margins for multivariate models. University of British Columbia, Vancouver (1996)Google Scholar
  69. 69.
    Rybus, T., Seweryn, K., Sasiadek, J.Z.: Control system for free-floating space manipulator based on nonlinear model predictive control (NMPC). In: Journal of Intelligent & Robotic Systems, pp. 1–19. Springer, Berlin (2016)Google Scholar
  70. 70.
    Knapp-Cordes, M., McKeeman, B.: Improvements to tic and toc functions for measuring absolute elapsed time performance in MATLAB. In: MATLAB Digest (doc. 91934v00), Tech. Rep (2011)Google Scholar
  71. 71.
    Dagan, E., Mano, O., Stein, G.P., Shashua, A.: Forward collision warning with a single camera. In: Intelligent vehicles symposium, pp. 37–42. IEEE, Piscataway (2004)Google Scholar
  72. 72.
    Käfer, E., Hermes, C., Wöhler, C., Ritter, H., Kummert, F.: Recognition of situation classes at road intersections. In: 2010 IEEE international conference on robotics and automation (ICRA), pp. 3960–3965. IEEE, Piscataway (2010)Google Scholar
  73. 73.
    Wakasugi, T.: A study on warning timing for lane change decision aid systems based on driver’s lane change maneuver. In: Proceedings 19th international technical conference on the enhanced safety of vehicles, paper, pp. 05–0290 (2005)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Umar Zakir Abdul Hamid
    • 1
  • Mohd Hatta Mohammed Ariff
    • 1
  • Hairi Zamzuri
    • 1
  • Yuichi Saito
    • 2
  • Muhammad Aizzat Zakaria
    • 3
  • Mohd Azizi Abdul Rahman
    • 1
  • Pongsathorn Raksincharoensak
    • 2
  1. 1.Vehicle System Engineering iKohza, Malaysia-Japan International Institute of TechnologyUniversiti Teknologi MalaysiaKuala LumpurMalaysia
  2. 2.Department of Mechanical Systems EngineeringTokyo University of Agriculture & TechnologyKoganeiJapan
  3. 3.Faculty of Manufacturing EngineeringUniversiti Malaysia PahangPekanMalaysia

Personalised recommendations