Journal of Intelligent & Robotic Systems

, Volume 89, Issue 3–4, pp 465–484 | Cite as

Decentralized Multi-Robot Formation Control with Communication Delay and Asynchronous Clock

  • Long PengEmail author
  • Fei Guan
  • Luc Perneel
  • Hasan Fayyad-Kazan
  • Martin Timmerman


This paper investigates the leader–follower formation control problem for a group of networked nonholonomic mobile robots that are subject to bounded time-varying communication delays and an asynchronous clock. First we convert the formation control problem into a trajectory tracking problem, and then a fully distributed unified control framework based on the receding horizon control is implemented to converge the tracking errors. By adding an auxiliary acceleration term into the receding horizon controller, the framework is able to solve the impractical velocity jump problem. Considering the time-varying delays, the timing and order features of the messages are utilized to guarantee their logical correctness. To compensate for the delay effect, an improved control framework that exploits the predictability of the receding horizon controller is proposed. The asynchronous clock problem, which makes the communication delay unmeasurable, is studied. We give a definition of the syn point that is inspired from investigation of the property that messages are received out of order in a bounded time-varying delayed network. A novel method that detects the occurrence of syn points is integrated into the control framework to solve the asynchronous clock problem. Finally the effectiveness of the proposed approaches is demonstrated in the Player/Stage simulation environment.


Leader–follower formation Trajectory tracking Receding horizon control Communication delay Asynchronous clock Syn point 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the China Scholarship Council (CSC) under Grant No. 201206110039.


  1. 1.
    Balch, T., Arkin, R.C.: Behavior-based formation control for multirobot teams. IEEE T. Robotic. Autom. 14(6), 926–939 (1998)CrossRefGoogle Scholar
  2. 2.
    Chaimowicz, L., Cowley, A., Gomez-Ibanez, D., Grocholsky, B., Hsieh, M., Hsu, H., Keller, J., Kumar, V., Swaminathan, R., Taylor, C.: Deploying air-ground multi-robot teams in urban environments Multi-Robot Systems. From Swarms to Intelligent Automata Volume III, pp. 223–234. Springer (2005)Google Scholar
  3. 3.
    Chen, H., Allgower, F.: A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability 1997 European Control Conference (ECC), pp. 1421–1426. IEEE (1997)Google Scholar
  4. 4.
    Chen, J., Sun, D., Yang, J., Chen, H.: A leader-follower formation control of multiple nonholonomic mobile robots incorporating receding-horizon scheme. International Journal of Robotics Research (2009)Google Scholar
  5. 5.
    Cheng-Lin, L., Yu-Ping, T.: Formation control of second-order dynamic agents with heterogeneous communication delays. In: 2008 27th Chinese Control Conference, pp. 536–540. IEEE (2008)Google Scholar
  6. 6.
    Collett, T.H., MacDonald, B.A., Gerkey, B.P.: Player 2.0: Toward a practical robot programming framework. In: Proceedings of the Australasian Conference on Robotics and Automation (ACRA 2005), p. 145 (2005)Google Scholar
  7. 7.
    Dai, Y., Lee, S.G.: The leader-follower formation control of nonholonomic mobile robots. Int. J. Control Autom. 10(2), 350–361 (2012)CrossRefGoogle Scholar
  8. 8.
    D’Andréa-Novel, B., Bastin, G., Campion, G.: Modelling and control of non-holonomic wheeled mobile robots. In: 1991 IEEE International Conference on Robotics and Automation, pp. 1130–1135. IEEE (1991)Google Scholar
  9. 9.
    Das, A.K., Fierro, R., Kumar, V., Ostrowski, J.P., Spletzer, J., Taylor, C.J.: A vision-based formation control framework. IEEE T. Robot. Autom. 18(5), 813–825 (2002)CrossRefGoogle Scholar
  10. 10.
    Defoort, M., Floquet, T., Kokosy, A., Perruquetti, W.: Sliding-mode formation control for cooperative autonomous mobile robots. IEEE T. Ind. Electron. 55(11), 3944–3953 (2008)CrossRefGoogle Scholar
  11. 11.
    Dong, X., Xi, J., Lu, G., Zhong, Y.: Formation control for high-order linear time-invariant multiagent systems with time delays. IEEE Trans. Control Netw. Syst. 1(3), 232–240 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dunbar, W.B., Murray, R.M.: Distributed receding horizon control for multi-vehicle formation stabilization. Automatica 42(4), 549–558 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Findeisen, R., Imsland, L., Allgower, F., Foss, B.A.: State and output feedback nonlinear model predictive control: An overview. Eur. J. Control 9(2), 190–206 (2003)CrossRefzbMATHGoogle Scholar
  14. 14.
    Franzè, G., Lucia, W.: An obstacle avoidance model predictive control scheme for mobile robots subject to nonholonomic constraints: A sum-of-squares approach. J. Frankl. Inst. 352(6), 2358–2380 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gerkey, B., Vaughan, R.T., Howard, A.: The player/stage project: Tools for multi-robot and distributed sensor systems. In: Proceedings of the 11th international conference on advanced robotics, vol. 1, pp. 317–323 (2003)Google Scholar
  16. 16.
    Gustavi, T., Hu, X.: Observer-based leader-following formation control using onboard sensor information. IEEE T. Robot. 24(6), 1457–1462 (2008)CrossRefGoogle Scholar
  17. 17.
    Hougen, D.F., Benjaafar, S., Bonney, J.C., Budenske, J.R., Dvorak, M., Gini, M., French, H., Krantz, D.G., Li, P.Y., Malver, F., et al.: A miniature robotic system for reconnaissance and surveillance. In: Proceedings of the 2000 IEEE International Conference on Robotics and Automation, vol. 1, pp. 501–507. IEEE (2000)Google Scholar
  18. 18.
    Houska, B., Ferreau, H.J., Diehl, M.: An auto-generated real-time iteration algorithm for nonlinear mpc in the microsecond range. Automatica 47(10), 2279–2285 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Izadi, H.A., Gordon, B.W., Zhang, Y.: Decentralized receding horizon control for cooperative multiple vehicles subj ect to communication delay. J. Guid., Control, Dyn. 32(6), 1959–1965 (2009)CrossRefGoogle Scholar
  20. 20.
    Izadi, H.A., Gordon, B.W., Zhang, Y.: Hierarchical decentralized receding horizon control of multiple vehicles with communication failures. IEEE T. Aero. Elec. Sys. 49(2), 744–759 (2013)CrossRefGoogle Scholar
  21. 21.
    Jiang, L., Zhang, R.: Stable formation control of multi-robot system with communication delay, vol. 9 (2012)Google Scholar
  22. 22.
    Lewis, M.A., Tan, K.H.: High precision formation control of mobile robots using virtual structures. Auton. Robot. 4(4), 387–403 (1997)CrossRefGoogle Scholar
  23. 23.
    Li, X., Xiao, J., Cai, Z.: Backstepping based multiple mobile robots formation control. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 887–892. IEEE (2005)Google Scholar
  24. 24.
    Liu, J., Muñoz de la Peña, D., Christofides, P.D., Davis, J.F.: Lyapunov-based model predictive control of nonlinear systems subject to time-varying measurement delays. Int. J. Adapt. Control 23(8), 788–807 (2009)CrossRefzbMATHGoogle Scholar
  25. 25.
    Münz, U., Papachristodoulou, A., Allgöwer, F.: Delay-dependent rendezvous and flocking of large scale multi-agent systems with communication delays. In: 2008 47th IEEE Conference on Decision and Control, pp. 2038–2043. IEEE (2008)Google Scholar
  26. 26.
    Nourbakhsh, I.R., Sycara, K., Koes, M., Yong, M., Lewis, M., Burion, S.: Human-robot teaming for search and rescue. IEEE Pervas. Comput. 4(1), 72–79 (2005)CrossRefGoogle Scholar
  27. 27.
    Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE T. Automat. Contr. 49(9), 1520–1533 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Peng, Z., Wen, G., Rahmani, A., Yu, Y.: Leader-follower formation control of nonholonomic mobile robots based on a bioinspired neurodynamic based approach. Robot. Auton. Syst. 61(9), 988–996 (2013)CrossRefGoogle Scholar
  29. 29.
    Ren, W., Beard, R.: Decentralized scheme for spacecraft formation flying via the virtual structure approach. J. Guid. Control Dyn. 27(1), 73–82 (2004)CrossRefGoogle Scholar
  30. 30.
    Sadowska, A., Den Broek, T.V., Huijberts, H., van de Wouw, N., Kostić, D., Nijmeijer, H.: A virtual structure approach to formation control of unicycle mobile robots using mutual coupling. Int. J. Control 84(11), 1886–1902 (2011)Google Scholar
  31. 31.
    Sanchez, J., Fierro, R.: Sliding mode control for robot formations. In: 2003 IEEE International Symposium on Intelligent Control, pp. 438–443. IEEE (2003)Google Scholar
  32. 32.
    Shao, J., Xie, G., Wang, L.: Leader-following formation control of multiple mobile vehicles. IET Control Theory Appl. 1(2), 545–552 (2007)CrossRefGoogle Scholar
  33. 33.
    Sipahi, R., Niculescu, S.I., Abdallah, C.T., Michiels, W., Gu, K.: Stability and stabilization of systems with time delay. IEEE Contr. Syst. Mag. 31(1), 38–65 (2011)CrossRefGoogle Scholar
  34. 34.
    Stipanović, D. M., Inalhan, G., Teo, R., Tomlin, C.J.: Decentralized overlapping control of a formation of unmanned aerial vehicles. Automatica 40(8), 1285–1296 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Stoeter, S.A., Rybski, P.E., Stubbs, K.N., McMillen, C.P., Gini, M., Hougen, D.F., Papanikolopoulos, N.: A robot team for surveillance tasks: Design and architecture. Robot Auton. Syst. 40(2), 173–183 (2002)CrossRefzbMATHGoogle Scholar
  36. 36.
    Sun, B., Zhu, D., Yang, S.X.: A bioinspired filtered backstepping tracking control of 7000-m manned submarine vehicle. IEEE Trans. Ind. Electron. 61(7), 3682–3693 (2014)CrossRefGoogle Scholar
  37. 37.
    Tian, Y.P., Zhang, Y.: High-order consensus of heterogeneous multi-agent systems with unknown communication delays. Automatica 48(6), 1205–1212 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Vidal, R., Shakernia, O., Sastry, S.: Formation control of nonholonomic mobile robots with omnidirectional visual servoing and motion segmentation. In: 2003 IEEE International Conference on Robotics and Automation, vol. 1, pp. 584–589. IEEE (2003)Google Scholar
  39. 39.
    Werfel, J., Petersen, K., Nagpal, R.: Designing collective behavior in a termite-inspired robot construction team. Science 343(6172), 754–758 (2014)CrossRefGoogle Scholar
  40. 40.
    Xu, D., Zhang, X., Zhu, Z., Chen, C., Yang, P.: Behavior-based formation control of swarm robots, vol. 2014 (2014)Google Scholar
  41. 41.
    Xu, Z., Schröter, M., Necsulescu, D., Ma, L., Schilling, K.: Formation control of car-like autonomous vehicles under communication delay. In: 2012 31st Chinese Control Conference, pp. 6376–6383. IEEE (2012)Google Scholar
  42. 42.
    Yoon, Y., Shin, J., Kim, H.J., Park, Y., Sastry, S.: Model-predictive active steering and obstacle avoidance for autonomous ground vehicles. Control Eng. Pract. 17(7), 741–750 (2009)CrossRefGoogle Scholar
  43. 43.
    Yoshioka, C., Namerikawa, T.: Formation control of nonholonomic multi-vehicle systems based on virtual structure. In: 17th IFAC World Congress, pp. 5149–5154 (2008)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Electronics and InformaticsVrije Universiteit Brussel (VUB)BrusselBelgium
  2. 2.National Key Laboratory of Parallel and Distributed ProcessingNational University of Defense TechnologyChangshaChina

Personalised recommendations