A Multi-Layered Component-Based Approach for the Development of Aerial Robotic Systems: The Aerostack Framework


To achieve fully autonomous operation for Unmanned Aerial Systems (UAS) it is necessary to integrate multiple and heterogeneous technical solutions (e.g., control-based methods, computer vision methods, automated planning, coordination algorithms, etc.). The combination of such methods in an operational system is a technical challenge that requires efficient architectural solutions. In a robotic engineering context, where productivity is important, it is also important to minimize the effort for the development of new systems. As a response to these needs, this paper presents Aerostack, an open-source software framework for the development of aerial robotic systems. This framework facilitates the creation of UAS by providing a set of reusable components specialized in functional tasks of aerial robotics (trajectory planning, self localization, etc.) together with an integration method in a multi-layered cognitive architecture based on five layers: reactive, executive, deliberative, reflective and social. Compared to other software frameworks for UAS, Aerostack can provide higher degrees of autonomy and it is more versatile to be applied to different types of hardware (aerial platforms and sensors) and different types of missions (e.g. multi robot swarm systems). Aerostack has been validated during four years (since February 2013) by its successful use on many research projects, international competitions and public exhibitions. As a representative example of system development, this paper also presents how Aerostack was used to develop a system for a (fictional) fully autonomous indoors search and rescue mission.

This is a preview of subscription content, log in to check access.


  1. 1.

    Arkin, R.C., Riseman, E.M., Hanson, A.R.: Aura: An architecture for vision-based robot navigation. In: Proceedings of the DARPA Image Understanding Workshop (1987)

  2. 2.

    Brachman, R.J.: Systems that know what they’re doing. IEEE Intell. Syst. 17(6), 67–71 (2002). doi:10.1109/MIS.2002.1134363

    Article  Google Scholar 

  3. 3.

    Brisset, P., Drouin, A., Gorraz, M., Huard, P.S., Tyler, J.: The paparazzi solution. In: MAV 2006, 2nd US-European Competition and Workshop on Micro Air Vehicles (2006)

  4. 4.

    Davis, D.N.: Computational Architectures for Intelligence and Motivation. In: Proceedings of the 2002 IEEE International Symposium on Intelligent Control, 2002. IEEE (2002)

  5. 5.

    Duffy, B.R., Dragone, M., O’Hare, G.M.: Social robot architecture: a framework for explicit social interaction. In: Android Science: Towards Social Mechanisms, Cogsci 2005 Workshop, Stresa, Italy (2005)

  6. 6.

    Garrido-Jurado, S., Muñoz-Salinas, R, Madrid-Cuevas, F., Marín-Jiménez, M: Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recogn. 47(6), 2280–2292 (2014). doi:10.1016/j.patcog.2014.01.005. http://www.sciencedirect.com/science/article/pii/S0031320314000235

    Article  Google Scholar 

  7. 7.

    Gat, E.: On three-layer architectures. In: Kortenkamp, D., Bonnasso, R.P., Murphy, R. (eds.) Artificial Intelligence and Mobile Robots, AAAI Press (1998)

  8. 8.

    Grabe, V., Riedel, M., Bulthoff, H., Giordano, P., Franchi, A.: The telekyb framework for a modular and extendible ros-based quadrotor control. In: 2013 European Conference on Mobile Robots (ECMR), 19–25. doi:10.1109/ECMR.2013.6698814 (2013)

  9. 9.

    Kendoul, F.: A survey of advances in guidance, navigation, and control of unmanned rotorcraft systems. J. Field Rob. 29(2), 315–378 (2012)

    Article  Google Scholar 

  10. 10.

    Kohlbrecher, S., Meyer, J., Graber, T., Petersen, K., von Stryk, O., Klingauf, U.: Robocuprescue 2014-robot league team hector darmstadt (Germany). RoboCupRescue 2014 (2014)

  11. 11.

    Lim, H., Park, J., Lee, D., Kim, H.: Build your own quadrotor: Open-source projects on unmanned aerial vehicles. IEEE Robot. Autom. Mag. 19(3), 33–45 (2012). doi:10.1109/MRA.2012.2205629

    Article  Google Scholar 

  12. 12.

    Van de Loosdrecht, J., Dijkstra, K., Postma, J., Keuning, W., Bruin, D.: Twirre: Architecture for autonomous mini-uavs using interchangeable commodity components. In: IMAV 2014: International Micro Air Vehicle Conference and Competition 2014, Delft, The Netherlands, August 12–15, 2014, Delft University of Technology (2014)

  13. 13.

    Molina, M., Diaz-Moreno, A., Palacios, D., Suarez-Fernandez, R.A., Sanchez-Lopez, J.L., Sampedro, C., Bavle, H., Campoy, P.: Specifying complex missions for aerial robotics in dynamic environments. In: International Micro Air Vehicle Conference and Competition, IMAV 2016, Beijing, China (2016)

  14. 14.

    Murphy, R.: Introduction to AI robotics. MIT press (2000)

  15. 15.

    Pestana, J.: On-Board Control Algorithms for Quadrotors and Indoors Navigation Master’s Thesis. Universidad Politécnica de Madrid, Spain (2012)

    Google Scholar 

  16. 16.

    Pestana, J., Mellado-Bataller, I., Fu, C., Sanchez-Lopez, J.L., Mondragon, I.F., Campoy, P.: A General Purpose Configurable Navigation Controller for Micro Aerial Multirotor Vehicles. ICUAS (2013)

  17. 17.

    Pestana, J., Sanchez-Lopez, J., Campoy, P., Saripalli, S.: Vision based gps-denied object tracking and following for unmanned aerial vehicles. In: 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), 1–6. doi:10.1109/SSRR.2013.6719359 (2013b)

  18. 18.

    Pestana, J., Mellado-Bataller, I., Sanchez-Lopez, J.L., Fu, C., Mondragón, IF, Campoy, P.: A general purpose configurable controller for indoors and outdoors gps-denied navigation for multirotor unmanned aerial vehicles. J. Intell. Robot. Syst. 73(1-4), 387–400 (2014)

    Article  Google Scholar 

  19. 19.

    Pestana, J., Sanchez-Lopez, J., de la Puente, P., Carrio, A., Campoy, P.: A vision-based quadrotor swarm for the participation in the 2013 international micro air vehicle competition. In: 2014 International Conference on Unmanned Aircraft Systems (ICUAS), 617–622. doi:10.1109/ICUAS.2014.6842305 (2014b)

  20. 20.

    Pestana, J., Sanchez-Lopez, J., Saripalli, S., Campoy, P.: Computer vision based general object following for gps- denied multirotor unmanned vehicles. In: American Control Conference (ACC), 1886–1891 (2014) doi:10.1109/ACC.2014.6858831

  21. 21.

    Pestana, J., Sanchez-Lopez, J.L., de la Puente, P., Carrio, A., Campoy, P.: A vision-based quadrotor multi-robot solution for the indoor autonomy challenge of the 2013 international micro air vehicle competition. J. Intell. Robotic Syst. 1–20 (2015). doi:10.1007/s10846-015-0304-1

  22. 22.

    Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3 (2009)

  23. 23.

    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Pearson Education (2003)

  24. 24.

    Sampedro, C., Bavle, H., Sanchez-Lopez, J., Suarez-Fernandez, R., Rodriguez, A., Molina, M., Campoy, P.: A flexible and dynamic mission planning architecture for uav swarm coordination. In: 2016 International Conference on Unmanned Aircraft Systems (ICUAS) (2016)

  25. 25.

    Sanchez-Lopez, J., Pestana, J., de la Puente, P., Suarez-Fernandez, R., Campoy, P.: A system for the design and development of vision-based multi-robot quadrotor swarms. In: 2014 International Conference on Unmanned Aircraft Systems (ICUAS) (2014). doi:10.1109/ICUAS.2014.6842308

  26. 26.

    Sanchez-Lopez, J., Pestana, J., Collumeau, J.F., Suarez-Fernandez, R., Campoy, P., Molina, M.: A vision based aerial robot solution for the mission 7 of the international aerial robotics competition. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS), 1391–1400 (2015a). doi:10.1109/ICUAS.2015.7152435

  27. 27.

    Sanchez-Lopez, J., Suarez-Fernandez, R., Bavle, H., Sampedro, C., Molina, M., Pestana, J., Campoy, P.: Aerostack: An architecture and open-source software framework for aerial robotics. In: 2016 International Conference on Unmanned Aircraft Systems (ICUAS) (2016)

  28. 28.

    Sanchez-Lopez, J.L., Pestana, J., de la Puente, P., Carrio, A., Campoy, P.: Visual quadrotor swarm for the imav 2013 indoor competition. In: Armada, M.A., Sanfeliu, A., Ferre, M. (eds.) ROBOT2013: First Iberian Robotics Conference, Springer, Advances in Intelligent Systems and Computing, vol. 253 (2013). doi:10.1007/978-3-319-03653-3_5

  29. 29.

    Sanchez-Lopez, J.L., Pestana, J., Puente, P., Campoy, P.: A reliable open-source system architecture for the fast designing and prototyping of autonomous multi-uav systems: Simulation and experimentation. J. Intell. Robotic Syst. 1–19 (2015). doi:10.1007/s10846-015-0288-x

  30. 30.

    Singh, P., Minsky, M.: An architecture for cognitive diversity. Visions of mind: architectures for cognition and affect 312, 166 (2005)

    Google Scholar 

  31. 31.

    Sloman, A.: What sort of architecture is required for a human-like agent? In: Wooldridge, M., Rao, A. (eds.) Foundations of Rational Agency, Kluwer Academic Publishers (1999)

  32. 32.

    Suarez-Fernandez, R., Sanchez-Lopez, J., Sampedro, C., Bavle, H., Molina, M., Campoy, P.: Natural user interfaces for human-drone multi-modal interaction. In: 2016 International Conference on Unmanned Aircraft Systems (ICUAS) (2016)

Download references


This research work has been partially supported by the Spanish Ministry of Economy and Competitiveness through the project VA4UAV (Visual autonomy for UAV in Dynamic Environments), reference DPI2014-60139-R. The authors would like to thank, as well, the Consejo Superior de Investigaciones Cientificas (CSIC) of Spain for the JAE-Predoctoral scholarships of one of the authors and his funded research stays.

The authors would like to thank other members from the Computer Vision and Aerial Robotics (CVAR) research group and the Department of Artificial Intelligence (UPM) for their help in software programming and the development of fight experiments: David Palacios, Adrian Diaz-Moreno, Guillermo de Fermín, Alberto Camporredondo and Carlos Valencia.

Author information



Corresponding author

Correspondence to Jose Luis Sanchez-Lopez.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sanchez-Lopez, J.L., Molina, M., Bavle, H. et al. A Multi-Layered Component-Based Approach for the Development of Aerial Robotic Systems: The Aerostack Framework. J Intell Robot Syst 88, 683–709 (2017). https://doi.org/10.1007/s10846-017-0551-4

Download citation


  • Aerial robotics
  • Robot architecture
  • Autonomous behavior
  • Distributed robot systems
  • Multi-robot coordination
  • Quadrotor
  • Mobile robots
  • Remotely operated vehicles
  • MAV