Journal of Intelligent & Robotic Systems

, Volume 89, Issue 1–2, pp 139–153 | Cite as

Collision Avoidance Based on Line-of-Sight Angle

Guaranteed Safety Using Limited Information About the Obstacle
  • Venanzio CichellaEmail author
  • Thiago Marinho
  • Dušan Stipanović
  • Naira Hovakimyan
  • Isaac Kaminer
  • Anna Trujillo


This paper focuses on the problem of collision avoidance for Unmanned Aerial Vehicles (UAVs). The dynamics of the UAV are modeled as a Dubins vehicle flying at constant altitude. The angular velocity is used as control input in order to avert a possible collision with a single obstacle, while the speed is left as an extra degree of freedom to achieve some temporal requirements. The proposed control algorithm uses only the line-of-sight angle as feedback: in this sense, the main contribution of this paper is providing a solution to the collision avoidance problem that can be used in situations where it is not possible to measure data such as position and velocity of the obstacle. A theoretical analysis of the result is provided, followed by simulation results that validate the efficacy of the control strategy.


Autonomy Collision Avoidance Line-of-sight angle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Introduction to TCAS II, version 7.1. Federal Aviation Administration (2011)Google Scholar
  2. 2.
    Automatic dependent surveillance-broadcast (ads-b). Federal Aviation Administration. Available at,
  3. 3.
    Spriesterbach, T. P., Bruns, K. A., Baron, L. I., Sohlke, J. E.: Unmanned aircraft system airspace integration in the national airspace using a ground-based sense and avoid system. J. Hopkins APL Tech. Dig. 32(3), 572–583 (2013)Google Scholar
  4. 4.
    Lyu, Y., Pan, Q., Zhao, C., Yu, C., Hu, J.: A UAV sense and avoid system design method based on software simulation. In: 2016 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 572–579. IEEE (2016)Google Scholar
  5. 5.
    Sivaraman, S., Trivedi, M. M.: Looking at vehicles on the road: a survey of vision-based vehicle detection, tracking, and behavior analysis. IEEE Trans. Intell. Transp. Syst. 14(4), 1773–1795 (2013)CrossRefGoogle Scholar
  6. 6.
    Adán, A., Quintana, B., Vázquez, A. S., Olivares, A., Parra, E., Prieto, S.: Towards the automatic scanning of indoors with robots. Sensors 15(5), 11551–11574 (2015)CrossRefGoogle Scholar
  7. 7.
    Reina, G., Johnson, D., Underwood, J.: Radar sensing for intelligent vehicles in urban environments. Sensors 15(6), 14661–14678 (2015)CrossRefGoogle Scholar
  8. 8.
    Kochenderfer, M. J., Griffith, J. D., Kuchar, J. K.: Hazard alerting using line-of-sight rate. In: AIAA guidance, navigation, and control conference and exhibit (2008)Google Scholar
  9. 9.
    Albaker, B. M., Rahim, N. A.: Unmanned aircraft collision detection and resolution: concept and survey. In: 2010 the 5th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 248–253. IEEE (2010)Google Scholar
  10. 10.
    Rozantsev, A., Lepetit, V, Fua, P.: Flying objects detection from a single moving camera. arXiv preprint arXiv:1411.7715 (2014)
  11. 11.
    Leitmann, G., Skowronski, J. M.: Avoidance control. J. Optim. Theory Appl. 23, 581–591 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Moravec, H.: Certainty grids for mobile robots. In: Proceedings of the NASA/JPL Space Telerobotics Workshop, vol. 1, pp. 307–312 (1987)Google Scholar
  13. 13.
    Borenstein, J., Koren, Y.: The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Trans. Robot. Autom. 7(3), 278–288 (1991)CrossRefGoogle Scholar
  14. 14.
    Khatib, O., Yokoi, K., Brock, O., Chang, K.-S., Casal, A.: Robots in human environments: Basic autonomous capabilities. Int. J. Robot. Res. 18(7), 684–696 (1999)CrossRefGoogle Scholar
  15. 15.
    Chakravarthy, A., Ghose, D.: Obstacle avoidance in a dynamic environment: a collision cone approach. IEEE Trans. Syst. Man Cybern. 28(5), 562–574 (1998)CrossRefGoogle Scholar
  16. 16.
    Fasano, G., Accardo, D., Moccia, A., Carbone, C., Ciniglio, U., Corraro, F., Luongo, S.: Multi-sensor-based fully autonomous non-cooperative collision avoidance system for unmanned air vehicles. J. Aerosp. Comput. Inf. Commun. 5(10), 338–360 (2008)CrossRefGoogle Scholar
  17. 17.
    Stipanović, D. M., Melikyan, A., Hovakimyan, N.: Guaranteed strategies for nonlinear multi-player pursuit-evasion games. Int. Game Theory Rev. 12, 1–17 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Shankaran, S., Stipanović, D. M., Tomlin, C. J.: Collision avoidance strategies for a three-player game. In: Advances in Dynamic Games, pp. 253–271. Springer (2011)Google Scholar
  19. 19.
    Isaacs, R.: Differential games: a mathematical theory with applications to warfare and pursuit, control and optimization. Courier Corporation (1999)Google Scholar
  20. 20.
    Rodriguez-Seda, E. J., Stipanovic, D. M., Spong, M. W.: Collision avoidance control with sensing uncertainties. In: American Control Conference (ACC), 2011, pp. 3363–3368. IEEE (2011)Google Scholar
  21. 21.
    Panagou, D., Stipanović, D. M., Voulgaris, P. G.: Vision–based dynamic coverage control for nonholonomic agents. In: Proceedings of the 53rd IEEE Conference on Decision and Control. IEEE, Los Angeles (2014)Google Scholar
  22. 22.
    Hexsel, B., Chakraborty, N., Sycara, K.: Distributed coverage control for mobile anisotropic sensor networks. Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-13-01 (2013)Google Scholar
  23. 23.
    Gusrialdi, A., Hatanaka, T., Fujita, M.: Coverage control for mobile networks with limited-range anisotropic sensors. In: 47th IEEE Conference on Decision and Control, 2008. CDC 2008, pp. 4263–4268. IEEE (2008)Google Scholar
  24. 24.
    Laventall, K., Cortés, J.: Coverage control by robotic networks with limited-range anisotropic sensory. In: American Control Conference, 2008, pp. 2666–2671. IEEE (2008)Google Scholar
  25. 25.
    George, J., Ghose, D.: A reactive inverse pn algorithm for collision avoidance among multiple unmanned aerial vehicles. In: American Control Conference, 2009. ACC’09, pp. 3890–3895. IEEE (2009)Google Scholar
  26. 26.
    Elfes, A.: Using occupancy grids for mobile robot perception and navigation. Computer 22(6), 46–57 (1989)CrossRefGoogle Scholar
  27. 27.
    Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robot. Int. J. Robot. Res. 5 (1), 90–98 (1986)CrossRefGoogle Scholar
  28. 28.
    Khatib, O., Yokoi, K., Chang, K.-S., Ruspini, D., Holmberg, R., Casal, A.: Coordination and decentralized cooperation of multiple mobile manipulators. J. Robot. Syst. 13(11), 755–764 (1996)CrossRefGoogle Scholar
  29. 29.
    Smith, A., Coulter, D., Jones, C.: UAS collision encounter modeling and avoidance algorithm development for simulating collision avoidance. In: AIAA Modeling and Simulation Technologies Conference and Exhibit. Honolulu. AIAA-2008-7043 (2008)Google Scholar
  30. 30.
    Lee, B. H., Jeon, J. D., Oh, J. H.: Velocity obstacle based local collision avoidance for a holonomic elliptic robot. Auton. Robot, 1–17 (2016). doi: 10.1007/s10514-016-9580-2
  31. 31.
    Exarchos, I., Tsiotras, P., Pachter, M.: UAV collision avoidance based on the solution of the suicidal pedestrian differential game. In: AIAA Guidance, Navigation, and Control Conference. San Diego, CA (2016)Google Scholar
  32. 32.
    Tripathi, A. K., Padhi, R.: Reactive collision avoidance of UAVs with simple pin-hole camera based passive stereovision sensing. Unmanned Syst. 1–25 (2016)Google Scholar
  33. 33.
    Degen, S. C.: Reactive image-based collision avoidance system for unmanned aircraft systems. PhD thesis, Queensland University of Technology (2011)Google Scholar
  34. 34.
    Shakernia, O., Chen, W.-Z., Raska, V. M.: Passive ranging for UAV sense and avoid applications. AIAA’s Infotech at Aerospace (2005)Google Scholar
  35. 35.
    Voos, H.: UAV “see and avoid”? with nonlinear filtering and non-cooperative avoidance. In: Proceedings of the 13th IASTED International Conference Robotics and Applications. Wurzburg, Germany (2007)Google Scholar
  36. 36.
    Sharma, R., Saunders, J. B., Beard, R. W.: Reactive path planning for micro air vehicles using bearing-only measurements. J. Intell. Robot. Syst. 65(1–4), 409–416 (2012)CrossRefGoogle Scholar
  37. 37.
    Kurohmaru, M.: Area expansion apparatus, area expansion method, and area expansion program. US Patent 6,934,336 (2005)Google Scholar
  38. 38.
    Cichella, V., Marinho, T., Stipanović, D. M., Hovakimyan, N., Kaminer, I., Trujillo, A.: Collision avoidance based on line-of-sight angle. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 6779–6784. IEEE (2015)Google Scholar
  39. 39.
    Dobrokhodov, V., Kaminer, I., Jones, K., Ghabcheloo, R.: Vision-based tracking and motion estimation for moving targets using unmanned air vehicles. J. Guid. Control. Dyn. 31(4), 907–917 (2008)CrossRefGoogle Scholar
  40. 40.
    Cichella, V., Kaminer, I., Dobrokhodov, V., Hovakimyan, N.: Cooperative vision based tracking of multiple UAVs. In: AIAA Guidance, Navigation, and Control Conference and Exhibit (2013)Google Scholar
  41. 41.
    Xargay, E., Kaminer, I., Pascoal, A, Hovakimyan, N, Dobrokhodov, V, Cichella, V, Pedro Aguiar, A., Ghabcheloo, R: Time-critical cooperative path following of multiple unmanned aerial vehicles over time-varying networks. J. Guid. Control. Dyn. 36(2), 499–516 (2013)CrossRefGoogle Scholar
  42. 42.
    Cichella, V, Kaminer, I, Dobrokhodov, V, Xargay, E, Choe, R, Hovakimyan, N, Aguiar, A.P., Pascoal, A. M.: Cooperative path following of multiple multirotors over time-varying networks. IEEE Trans. Autom. Sci. Eng. 12(3), 945–957 (2015)CrossRefGoogle Scholar
  43. 43.
    Ren, W, Beard, R W: Trajectory tracking for unmanned air vehicles with velocity and heading rate constraints. IEEE Trans. Control Syst. Technol. 12(5), 706–716 (2004)CrossRefGoogle Scholar
  44. 44.
    Cichella, V, Kaminer, I, Dobrokhodov, V, Hovakimyan, N: Coordinated vision-based tracking for multiple UAVs. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 656–661. IEEE (2015)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Coordinated Science LaboratoryUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of Mechanical and Aerospace EngineeringNaval Postgraduate SchoolMontereyUSA
  3. 3.Crew Systems and Aviation Operations BranchNASA Langley Research CenterHamptonUSA

Personalised recommendations