Skip to main content
Log in

Market-Based Task Assignment for Cooperative Timing Missions in Dynamic Environments

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

New market-based decentralized algorithms are proposed for the task assignment of multiple unmanned aerial vehicles in dynamic environments with a limited communication range. In particular, a cooperative timing mission that cannot be performed by a single vehicle is considered. The baseline algorithms for a connected network are extended to deal with time-varying network topology including isolated subnetworks due to a limited communication range. The mathematical convergence and scalability analyses show that the proposed algorithms have a polynomial time complexity, and numerical simulation results support the scalability of the proposed algorithm in terms of the runtime and communication burden. The performance of the proposed algorithms is demonstrated via Monte Carlo simulations for the scenario of the suppression of enemy air defenses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alighanbari, M.: Task assignment algorithms for teams of uavs in dynamic environments. Master’s thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge MA (2004)

  2. Alighanbari, M.: Robust and decentralized task assignment algorithms for uavs. Ph.D. dissertation, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge MA (2007)

  3. Arslan, G., Marden, J.R., Shamma, J.S.: Autonomous vehicle-target assignment: A game-theoretical formulation. J. Dyn. Syst. Meas. Control. 129(5), 584–596 (2007)

    Article  Google Scholar 

  4. Balmas, F.: Displaying dependence graphs: a hierarchical approach. J. Softw. Maint. Evol. Res. Pract. 16(3), 151–185 (2004)

    Article  Google Scholar 

  5. Beard, R.W., McLain, T.W.: Multiple Uav Cooperative Search under Collision Avoidance and Limited Range Communication Constraints. In: Proceedings of the IEEE Conference on Decision and Control, pp. 25–30 (2003)

  6. Bellingham, J., Tillerson, M., Richards, A., How, J.P.: Multi-Task Allocation and Path Planning for Cooperating Uavs. In: Conference on Coordination, Control and Optimization (2001)

  7. Chandler, P.R.: Decentralized Control for an Autonomous Team. In: Proceedings of the AIAA 2Nd Unmanned Unlimited Conference (2003)

  8. Choi, H., Kim, Y., Kim, H.: Genetic algorithm based decentralized task assignment for multiple uavs in dynamic environments. Int. J. Aeronaut. Space Sci. 12(2), 163–174 (2011)

    Google Scholar 

  9. Choi, H.L., Brunet, L., How, J.P.: Consensus-based decentralized auctions for robust task allocation. IEEE Trans. Robot. 25(4), 912–926 (2009)

    Article  Google Scholar 

  10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms. MIT University Press, Cambridge (2001)

  11. Das, G.P., McGinnity, T.M., Coleman, S.A.: Simultaneous allocations of multiple tightly-coupled multi-robot tasks to coalitions of heterogeneous robots. In: Proceedings of the IEEE International Conference on Robotics and Biomimetics (2014). doi:10.1109/ROBIO.2014.7090496

  12. Das, G.P., McGinnity, T.M., Coleman, S.A., Behera, L.: A distributed task allocation algorithm for a multi-robot system in healthcare facilities. J. Intell. Robot. Syst. 80(1), 33–58 (2015)

    Article  Google Scholar 

  13. Devadoss, S.L., O’Rourke, J.: Discrete and computational geometry. Princeton University Press, Princeton (2011)

  14. Dias, M.B., Zlot, R., Kalra, N., Stentz, A.: Market-based multirobot coordination: a survey and analysis. Proc. IEEE 94(7), 1257–1270 (2006)

    Article  Google Scholar 

  15. Dijkstra, E.W.: Selected writings on computing: a personal perspective. Springer, New York (1982)

  16. Edison, E., Shima, T.: Integrated task assignment and path optimization for cooperating uninhabited aerial vehicles using genetic algorithms. Comput. Oper. Res. 38(1), 340–356 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. George, J., Sujit, P., Sousa, J.: Coalition Formation with Communication Delays and Maneuvering Targets. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference (2010)

  18. Gerkey, B.P., Matari, M.J.: Sold!: Auction methods for multirobot coordination. IEEE Trans. Robot. Autom. 18(5), 758–768 (2002)

    Article  Google Scholar 

  19. Gerkey, B.P., Matarić, M.J.: A formal analysis and taxonomy of task allocation in multi-robot systems. Int. J. Robot. Res. 23(9), 939–954 (2004)

    Article  Google Scholar 

  20. Gross, J.L., Yellen, J.: Handbook of Graph Theory. CRC press, Boca Raton FL (2003)

  21. Haque, M., Egerstedt, M., Rahmani, A.: Multilevel coalition formation strategy for suppression of enemy air defenses missions. J. Aerospace Inform. Syst. 10(6), 287–296 (2013)

    Article  Google Scholar 

  22. Johnson, L., Choi, H.L., How, J.P.: Hybrid Information and Plan Consensus in Distributed Task Allocation. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference (2013)

  23. Karaman, S., Shima, T., Frazzoli, E.: A process algebra genetic algorithm. IEEE Trans. Evol. Comput. 16(4), 489–503 (2012)

    Article  Google Scholar 

  24. Khamis, A.M., Elmogy, A.M., Karray, F.O.: Complex task allocation in mobile surveillance systems. J. Intell. Robot. Syst. 64(1), 33–55 (2011)

    Article  Google Scholar 

  25. Manathara, J.G., Sujit, P., Beard, R.W.: Multiple uav coalitions for a search and prosecute mission. J. Intell. Robot. Syst. 62(1), 125–158 (2011)

    Article  MATH  Google Scholar 

  26. Martin, J.M.: Deadlock avoidance in distributed service oriented architectures. Master’s thesis, School of Computer Science, University of Oklahoma, Norman OK (2010)

  27. Maza, I., Kondak, K., Bernard, M., Ollero, A.: Multi-uav cooperation and control for load transportation and deployment. J. Intell. Robot. Syst. 57(1-4), 417–449 (2010)

    Article  MATH  Google Scholar 

  28. McLain, T.: Coordinated control of unmanned air vehicles. Technical Report ASC-99-2426 Air Vehicles Directorate of the Air Force Research Laboratory (1999)

  29. Oh, G., Kim, Y., Ahn, J., Choi, H.L.: Market-Based Task Assignment for Cooperative Timing Missions over Networks with Limited Connectivity. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference (2015)

  30. Ponda, S.S., Johnson, L.B., Kopeikin, A.N., Choi, H.L., How, J.P.: Distributed planning strategies to ensure network connectivity for dynamic heterogeneous teams. IEEE J. Sel. Areas Commun. 30(5), 861–869 (2012)

    Article  Google Scholar 

  31. Pujol-Gonzalez, M., Cerquides, J., Meseguer, P., Rodríguez-Aguilar, J., Tambe, M.: Engineering the decentralized coordination of uavs with limited communication range. In: Advances in Artificial Intelligence, vol. 8109, Lecture Notes in Computer Science, pp. 199–208. Springer, Berlin (2013). doi:10.1007/978-3-642-40643-0_21

  32. Rawlings, J.O., Pantula, S.G., Dickey, D.A.: Applied regression analysis: a research tool. Springer, New York (1998)

  33. Sandholm, T.W., Lesser, V.R.: Coalition Formation among Bounded Rational Agents. In: Proceedings of the International Joint Conference on Artificial Intelligence (1995)

  34. Service, T.C., Adams, J.A.: Coalition formation for task allocation: Theory and algorithms. Auton. Agent. Multi-Agent Syst. 22(2), 225–248 (2011)

    Article  Google Scholar 

  35. Shaferman, V., Shima, T.: Unmanned aerial vehicles cooperative tracking of moving ground target in urban environments. J. Guid. Control. Dyn. 31(5), 1360–1371 (2008)

    Article  Google Scholar 

  36. Shaferman, V., Shima, T.: Task Assignment and Motion Planning for Multiple Uavs Tracking Multiple Targets in Urban Environments. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference. Chicago, IL (2009)

  37. Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation. Artif. Intell. 101(1), 165–200 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shima, T., Schumacher, C.: Assigning cooperating uavs to simultaneous tasks on consecutive targets using genetic algorithms. J. Oper. Res. Soc. 60(7), 973–982 (2009)

    Article  MATH  Google Scholar 

  39. Smith, R.G.: The contract net protocol: High-level communication and control in a distributed problem solver. IEEE Trans. Comput. 29(12), 1104–1113 (1980)

    Article  Google Scholar 

  40. Sujit, P., Beard, R.: Distributed Sequential Auctions for Multiple Uav Task Allocation. In: Proceedings of the IEEE American Control Conference, pp. 3955–3960 (2007)

  41. Sujit, P., George, J., Beard, R.: Multiple Uav Coalition Formation. In: Proceedings of the IEEE American Control Conference, pp. 2010–2015 (2008)

  42. Sujit, P., George, J., Beard, R.: Multiple Uav Task Allocation Using Particle Swarm Optimization. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference (2008)

  43. Sujit, P., Manathara, J., Ghose, D., de Sousa, J.: Decentralized Multi-Uav Coalition Formation with Limited Communication Ranges. In: Handbook of Unmanned Aerial Vehicles, pp. 2021–2048. Springer, Berlin, Germany (2014)

  44. Vig, L., Adams, J.A.: Coalition formation: From software agents to robots. J. Intell. Robot. Syst. 50(1), 85–118 (2007)

    Article  Google Scholar 

  45. Weerdt, M.d., Zhang, Y., Klos, T.: Multiagent task allocation in social networks. Auton. Agent. Multi-Agent Syst. 25(1), 46–86 (2012)

    Article  Google Scholar 

  46. Whitten, A.K., Choi, H.L., Johnson, L.B., How, J.P.: Decentralized Task Allocation with Coupled Constraints in Complex Missions. In: Proceedings of the IEEE American Control Conference, pp. 1642–1649 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youdan Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, G., Kim, Y., Ahn, J. et al. Market-Based Task Assignment for Cooperative Timing Missions in Dynamic Environments. J Intell Robot Syst 87, 97–123 (2017). https://doi.org/10.1007/s10846-017-0493-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0493-x

Keywords

Navigation