Skip to main content
Log in

Optimization and Rapid Prototyping of Catadioptric Omnidirectional Stereo Sensors

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript


Omnidirectional stereo imaging provides useful depth information for autonomous navigation. In principle, omnidirectional stereo images can be achieved at a low cost, using a single camera and two curved mirrors, but such systems are not widely deployed. Here we describe the optimization and rapid prototyping of a low-cost omnidirectional stereo sensor for a telepresence robot. We consider single-viewpoint and non-single-viewpoint designs. We present a new way of relaxing single-viewpoint constraints, while retaining the ability to vertically rectify images. We also present a method of optimizing the resulting design to minimize depth errors. However, we show that despite these steps, nonsingle-viewpoint designs produce stereo disparities over a more practical range of distances. The lack of a single viewpoint could potentially introduce distortions that affect stereo matching, but these distortions are removed by projecting rays through the mirror geometry. We also describe a new method for rapid prototyping of curved mirrors using 3D printing and vacuum forming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Aggarwal, R., Vohra, A., Namboodiri, A.M.: Panoramic stereo videos with a single camera. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3755–3763 (2016)

  2. Baker, S., Nayar, S.: A theory of catadioptric image formation. In: Sixth International Conference on Computer Vision (1998). doi:10.1109/ICCV.1998.710698

  3. Chahl, J.S., Srinivasan, M.V.: Reflective surfaces for panoramic imaging. Appl. Opt. 36(31), 8275–85 (1997)

    Article  Google Scholar 

  4. Conroy, T., Moore, J.: Resolution invariant surfaces for panoramic vision systems. In: Proceedings of the Seventh IEEE International Conference on Computer Vision 1 (1999). doi:10.1109/ICCV.1999.791247

  5. Derrien, S., Konolige, K.: Approximating a single viewpoint in panoramic imaging devices. In: IEEE International Conference on Robotics and Automation, 2000. Proceedings. ICRA’00, vol. 4, pp. 3931–3938. IEEE (2000)

  6. Dhond, U., Aggarwal, J.: Structure from stereo-a review. IEEE Trans. Syst. Man Cybern. 19(6), 1489–1510 (1989)

    Article  MathSciNet  Google Scholar 

  7. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient Belief Propagation for Early Vision. Int. J. Comput. Vis. 70(1), 41–54 (2006). doi:10.1007/s11263-006-7899-4

  8. Fiala, M., Basu, A.: Panoramic stereo reconstruction using non-svp optics. Comput. Vis. Image Underst. 98(3), 363–397 (2005)

    Article  Google Scholar 

  9. Gaspar, J., Decco, C., Okamoto Jr., J., Santos-Victor, J.: Constant resolution omnidirectional cameras. In: Proceedings of the IEEE Workshop on Omnidirectional Vision 2002. Held in conjunction with ECCV’02 (2002). doi:10.1109/OMNVIS.2002.1044487

  10. Gluckman, J., Nayar, S.K., Thoresz, K.J.: Real-time omnidirectional and panoramic stereo. In: Proceedings of Image Understanding Workshop, vol. 1, pp. 299–303. Citeseer (1998)

  11. Hicks, R.A., Bajcsy, R.: Reflective surfaces as computational sensors. Image Vis. Comput. 19 (11), 773–777 (2001)

    Article  Google Scholar 

  12. Ishiguro, H., Yamamoto, M., Tsuji, S.: Omni-directional stereo. IEEE Trans. Pattern Anal. Mach. Intell. 2, 257–262 (1992)

    Article  Google Scholar 

  13. Jang, G., Kim, S., Kweon, I.: Single camera catadioptric stereo system. In: Proceedings of Workshop on Omnidirectional Vision, Camera Networks and Nonclassical cameras (OMNIVIS2005) (2005)

  14. Kim, J., Yoon, K.J., Kim, J.S., Kweon, I.: Visual slam by single-camera catadioptric stereo. In: 2006 SICE-ICASE International Joint Conference, pp 2005–2009. IEEE (2006)

  15. Koyasu, H., Miura, J., Shirai, Y.: Recognizing moving obstacles for robot navigation using real-time omnidirectional stereo vision. Image 2(b2), 1 (2002)

    Google Scholar 

  16. Koyasu, H., Miura, J., Shirai, Y.: Mobile robot navigation in dynamic environments using omnidirectional stereo. In: IEEE International Conference on Robotics and Automation, 2003. Proceedings. ICRA’03, vol. 1, pp. 893–898. IEEE (2003)

  17. Labutov, I., Jaramillo, C., Xiao, J.: Generating near-spherical range panoramas by fusing optical flow and stereo from a single-camera folded catadioptric rig. Mach. Vis. Appl. 24(1), 133–144 (2013)

    Article  Google Scholar 

  18. Marchese, F.M., Sorrenti, D.G.: Omni-directional vision with a multi-part mirror. In: RoboCup 2000: Robot Soccer World Cup IV, pp. 179–188. Springer (2000)

  19. Marchese, F.M., Sorrenti, D.G.: Mirror design of a prescribed accuracy omnidirectional vision system. In: Third Workshop on Omnidirectional Vision, 2002. Proceedings, pp. 136–142. IEEE (2002)

  20. Menegatti, E., Nori, F., Pagello, E., Pellizzari, C., Spagnoli, D.: Designing an omnidirectional vision system for a goalkeeper robot. In: RoboCup 2001: Robot Soccer World Cup V, pp. 81–91. Springer (2001)

  21. Munaro, M., Basso, F., Menegatti, E.: Tracking people within groups with RGB-D data. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2101–2107 (2012). doi:10.1109/IROS.2012.6385772.

  22. Nayar, S., Peri, V.: Folded catadioptric cameras. In: Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 217–223. IEEE Comput. Soc (1999). doi:10.1109/CVPR.1999.784632.

  23. Nayar, S.K.: Sphereo: determining depth using two specular spheres and a single camera. In: 1988 Robotics Conferences, pp 245–254. International Society for Optics and Photonics (1989)

  24. Nobrega, R.A., Barbosa, A.F., Bediaga, I., Cernicchiaro, G., Oliveira, E.C., Magnin, J., Miranda, J.M., Massafferri, A., Polycarpo, E., Reis, A., et al.: Lhcb reoptimized detector design and performance. Technical design report (2003)

  25. Ooi, T.L., Wu, B., He, Z.J.: Distance determined by the angular declination below the horizon. Nature 414(6860), 197–200 (2001). doi:10.1038/35102562 pubmed/11700556

  26. Peleg, S., Ben-Ezra, M.: Stereo panorama with a single camera. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1999, vol. 1. IEEE (1999)

  27. Su, L., Luo, C., Zhu, F.: Obtaining obstacle information by an omnidirectional stereo vision system. In: Proceedings of IEEE ICIA 2006 - 2006 IEEE International Conference on Information Acquisition, pp 48–52 (2006). doi:10.1109/ICIA.2006.305769

  28. Swaminathan, R., Grossberg, M.D., Nayar, S.K.: Non-single viewpoint catadioptric cameras: geometry and analysis. Int. J. Comput. Vis. 66(3), 211–229 (2006). doi:10.1007/s11263-005-3220-1

  29. Wu, B., Ooi, T., He, Z.: Perceiving distance accurately by a directional process of integrating ground information. Nature 428(4), 73–77 (2004). doi:10.1038/nature02345.1

  30. Zhu, Z.: Omnidirectional stereo vision. In: Proceedings of the Workshop on Omnidirectional Vision, Budapest, Hungary (2001)

  31. Zitnick, C.L., Kang, S.B.: Stereo for image-based rendering using image over-segmentation. Int. J. Comput. Vis. 75(1), 49–65 (2007). doi:10.1007/s11263-006-0018-8

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Bryan Tripp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripp, B., Singh, S. & Selby, B. Optimization and Rapid Prototyping of Catadioptric Omnidirectional Stereo Sensors. J Intell Robot Syst 86, 467–483 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: