DARP: Divide Areas Algorithm for Optimal Multi-Robot Coverage Path Planning

  • Athanasios Ch. Kapoutsis
  • Savvas A. Chatzichristofis
  • Elias B. Kosmatopoulos
Article

Abstract

This paper deals with the path planning problem of a team of mobile robots, in order to cover an area of interest, with prior-defined obstacles. For the single robot case, also known as single robot coverage path planning (CPP), an 𝓞(n) optimal methodology has already been proposed and evaluated in the literature, where n is the grid size. The majority of existing algorithms for the multi robot case (mCPP), utilize the aforementioned algorithm. Due to the complexity, however, of the mCPP, the best the existing mCPP algorithms can perform is at most 16 times the optimal solution, in terms of time needed for the robot team to accomplish the coverage task, while the time required for calculating the solution is polynomial. In the present paper, we propose a new algorithm which converges to the optimal solution, at least in cases where one exists. The proposed technique transforms the original integer programming problem (mCPP) into several single-robot problems (CPP), the solutions of which constitute the optimal mCPP solution, alleviating the original mCPP explosive combinatorial complexity. Although it is not possible to analytically derive bounds regarding the complexity of the proposed algorithm, extensive numerical analysis indicates that the complexity is bounded by polynomial curves for practical sized inputs. In the heart of the proposed approach lies the DARP algorithm, which divides the terrain into a number of equal areas each corresponding to a specific robot, so as to guarantee complete coverage, non-backtracking solution, minimum coverage path, while at the same time does not need any preparatory stage (video demonstration and standalone application are available on-line http://tinyurl.com/DARP-app).

Keywords

mCPP Multi-robots Complete coverage Minimum coverage paths Terrain sub-division 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    irobot web site. http://www.irobot.com. Accessed: 2016-4-1
  2. 2.
    Mixed integer linear programming (milp) solver, software. http://lpsolve.sourceforge.net/. Accessed: 2016-4-1
  3. 3.
    The area partitioning problem. In: Proceedings of the 12th Canadian Conference on Computational Geometry, Fredericton, New Brunswick, Canada (2000)Google Scholar
  4. 4.
    Acar, E., Zhang, Y., Choset, H., Schervish, M., Costa, A.G., Melamud, R., Lean, D.C., Graveline, A.: Path planning for robotic demining and development of a test platform. In: International Conference on Field and Service Robotics, vol. 1, pp 161–168 (2001)Google Scholar
  5. 5.
    Agmon, N., Hazon, N., Kaminka, G., et al.: Constructing spanning trees for efficient multi-robot coverage. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, pp 1698–1703. IEEE (2006)Google Scholar
  6. 6.
    Apostolopoulos, D.S., Pedersen, L., Shamah, B.N., Shillcutt, K., Wagner, M.D., Whittaker, W.L.: Robotic antarctic meteorite search: outcomes. In: IEEE International Conference on Robotics and Automation, 2001. Proceedings 2001 ICRA, vol. 4, pp 4174–4179. IEEE (2001)Google Scholar
  7. 7.
    Aurenhammer, F.: Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput. Surv. (CSUR) 23(3), 345–405 (1991)CrossRefGoogle Scholar
  8. 8.
    Barrientos, A., Colorado, J., del Cerro, J., Martinez, A., Rossi, C., Sanz, D., Valente, J.: Aerial remote sensing in agriculture: a practical approach to area coverage and path planning for fleets of mini aerial robots. J. Field Rob. 28(5), 667–689 (2011)CrossRefGoogle Scholar
  9. 9.
    Breitenmoser, A., Schwager, M., Metzger, J.-C., Siegwart, R., Rus, D.: Voronoi coverage of non-convex environments with a group of networked robots. In: IEEE International Conference on Robotics and Automation (ICRA), 2010, pp 4982–4989. IEEE (2010)Google Scholar
  10. 10.
    Butler, Z.J., Rizzi, A.A., Hollis, R.L.: Contact sensor-based coverage of rectilinear environments. In: Proceedings of the 1999 IEEE International Symposium on Intelligent Control/Intelligent Systems and Semiotics, 1999, pp 266–271. IEEE (1999)Google Scholar
  11. 11.
    Choset, H.: Coverage for robotics–a survey of recent results. Ann. Math. Artif. Intell. 31(1–4), 113–126 (2001)MATHCrossRefGoogle Scholar
  12. 12.
    Cortés, J.: Coverage optimization and spatial load balancing by robotic sensor networks. IEEE Trans. Autom. Control 55(3), 749–754 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. In: IEEE International Conference on Robotics and Automation, 2002. Proceedings. ICRA’02, vol. 2, pp 1327–1332. IEEE (2002)Google Scholar
  14. 14.
    Bernardine Dias, M., Zlot, R., Kalra, N., Stentz, A.: Market-based multirobot coordination: a survey and analysis. Proc. IEEE 94(7), 1257–1270 (2006)CrossRefGoogle Scholar
  15. 15.
    Du, Q., Emelianenko, M., Ju, L.: Convergence of the lloyd algorithm for computing centroidal voronoi tessellations. SIAM J. Numer. Anal. 44(1), 102–119 (2006)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Durham, J.W., Carli, R., Frasca, P., Bullo, F.: Discrete partitioning and coverage control for gossiping robots. IEEE Trans. Robot. 28(2), 364–378 (2012)CrossRefGoogle Scholar
  17. 17.
    Elmaliach, Y., Agmon, N., Kaminka, G.A.: Multi-robot area patrol under frequency constraints. Ann. Math. Artif. Intell. 57(3-4), 293–320 (2009)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Gabriely, Y., Rimon, E.: Spanning-tree based coverage of continuous areas by a mobile robot. Ann. Math. Artif. Intell. 31(1-4), 77–98 (2001)MATHCrossRefGoogle Scholar
  19. 19.
    Galceran, E., Carreras, M.: A survey on coverage path planning for robotics. Robot. Auton. Syst. 61(12), 1258–1276 (2013)CrossRefGoogle Scholar
  20. 20.
    Goldberg, K.: Robotics: countering singularity sensationalism. Nature 526(7573), 320–321 (2015)CrossRefGoogle Scholar
  21. 21.
    Hazon, N., Kaminka, G., et al.: Redundancy, efficiency and robustness in multi-robot coverage. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005. ICRA 2005, pp 735–741. IEEE (2005)Google Scholar
  22. 22.
    Kapoutsis, A., Chatzichristofis, S.A., Doitsidis, L., de Sousa, J.B., Kosmatopoulos, E.B., et al.: Autonomous navigation of teams of unmanned aerial or underwater vehicles for exploration of unknown static & dynamic environments. In: 21st Mediterranean Conference on Control & Automation (MED), 2013, pp 1181–1188. IEEE (2013)Google Scholar
  23. 23.
    Kapoutsis, A. Ch., Chatzichristofis, S.A., Doitsidis, L., de Sousa, J.B., Pinto, J., Braga, J., Kosmatopoulos, E.B.: Real-time adaptive multi-robot exploration with application to underwater map construction. Auton. Robot. 40(6), 987–1015 (2016)CrossRefGoogle Scholar
  24. 24.
    Lloyd, S.P.: Least squares quantization in pcm. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Maza, I., Ollero, A.: Multiple uav cooperative searching operation using polygon area decomposition and efficient coverage algorithms. In: Distributed Autonomous Robotic Systems 6, pp 221–230. Springer (2007)Google Scholar
  26. 26.
    Moloney, D., Suarez, O.D.: A vision for the future [soapbox]. IEEE Consumer Electronics Magazine 4(2), 40–45 (2015)CrossRefGoogle Scholar
  27. 27.
    Nandakumar, R., Ramana Rao, N.: Fair partitions of polygons: an elementary introduction. Proc. Math. Sci. 122(3), 459–467 (2012)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Ollis, M., Stentz, A.: Vision-based perception for an automated harvester. In: Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1997. IROS’97, vol. 3, pp 1838–1844. IEEE (1997)Google Scholar
  29. 29.
    Puig, D., García, M.A., Wu, L.: A new global optimization strategy for coordinated multi-robot exploration: development and comparative evaluation. Robot. Auton. Syst. 59(9), 635–653 (2011)CrossRefGoogle Scholar
  30. 30.
    Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica: Journal of the Econometric Society, 97–109 (1982)Google Scholar
  31. 31.
    Scaramuzza, D., Achtelik, M.C., Doitsidis, L., Fraundorfer, F., Kosmatopoulos, E.B., Martinelli, A., Achtelik, M.W., Chli, M., Chatzichristofis, S.A., Kneip, L., et al.: Vision-controlled micro flying robots: from system design to autonomous navigation and mapping in gps-denied environments. IEEE Robot. Autom. Mag., 1–10 (2014)Google Scholar
  32. 32.
    Schwager, M., Rus, D., Slotine, J.-J.: Decentralized, adaptive coverage control for networked robots. Int. J. Robot. Res. 28(3), 357–375 (2009)CrossRefGoogle Scholar
  33. 33.
    Tarjan, R.E.: Data Structures and Network Algorithms, vol. 14. SIAM (1983)Google Scholar
  34. 34.
    Waharte, S., Trigoni, N.: Supporting search and rescue operations with uavs. In: International Conference on Emerging Security Technologies (EST), 2010, pp 142–147. IEEE (2010)Google Scholar
  35. 35.
    Wright, S.J.: Coordinate descent algorithms. Math. Program. 151(1), 3–34 (2015)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Xu, A., Viriyasuthee, C., Rekleitis, I.: Efficient complete coverage of a known arbitrary environment with applications to aerial operations. Auton. Robot. 36(4), 365–381 (2014)CrossRefGoogle Scholar
  37. 37.
    Xu, Y., Yin, W.: A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion. SIAM J. Imag. Sci. 6(3), 1758–1789 (2013)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Yao, Z.: Finding efficient robot path for the complete coverage of a known space. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 3369–3374. IEEE (2006)Google Scholar
  39. 39.
    Zheng, X., Jain, S., Koenig, S., Kempe, D.: Multi-robot forest coverage. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005. (IROS 2005). 2005, pp 3852–3857. IEEE (2005)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Athanasios Ch. Kapoutsis
    • 1
    • 2
  • Savvas A. Chatzichristofis
    • 1
    • 2
  • Elias B. Kosmatopoulos
    • 1
    • 2
  1. 1.Department of Electrical and Computer EngineeringDemocritus University of ThraceXanthiGreece
  2. 2.Information Technologies InstituteCERTHThessalonikiGreece

Personalised recommendations