Skip to main content

Energy Based 3D Autopilot for VTOL UAV Under Guidance & Navigation Constraints


Motion control design plays a crucial role in autonomous vehicles. Mainly, these systems operate in conditions of under-actuation, which make the control a serious task especially in presence of practical constraints. The main objective within this paper is to ensure the tracking of 3D reference trajectory overcoming some of the issues related to the control of multi-rotor vehicles (such as underactuation, robustness, limited power, accuracy, overshoot, etc.). Therefore, a control scheme for Vertical Take Off and Landing (VTOL) multi-rotor Unmanned Aerial Vehicle (UAV) is designed, applying the Interconnection and Damping Assignment-Passivity Based Control (IDA-PBC) technique. As reference model based technique, the control specifications are readily met by fixing a desired dynamic model, which is a major advantage of the technique. Moreover, a port −controlled Hamiltonian representation is exploited in order to point out the physical properties of the system such as its internal energy. This latter is exploited, as a fitness function for an optimization algorithm, in order to decrease the consumed energy especially at the take-off step and allows the tuning of the controller parameters. The numerical simulations have shown satisfactory results that support the claims using nominal system model or disturbed model. The designed controller has been implemented on a real vehicle for which one demonstrates, in an indoor area manipulation, the effectiveness of the proposed control strategy.

This is a preview of subscription content, access via your institution.


  1. Bouabdallah, S., Noth, A., Siegwart, R.: PID vs LQ control techniques applied to an indoor micro quadrotor. In: IROS 2004 Proceedings of the IEEE RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 2451–2456 (2004)

  2. Wang, C., Song, B., Huang, P., Tang, C.: Trajectory Tracking Control for Quadrotor Robot Subject to Payload Variation and Wind Gust Disturbance. J. Intell. Robot. Syst. 83(2), 315–333 (2016). doi:10.1007/s10846-016-0333-4

    Article  Google Scholar 

  3. Izaguirre-Espinosa, C., Muñoz-Vázquez, A.J., Sánchez-Orta, A., Parra-Vega, V., Sanahuja, G.: Fractional attitude-reactive control for robust quadrotor position stabilization without resolving underactuation. Control. Eng. Pract. 53, 47–56 (2016). doi:10.1016/j.conengprac.2016.04.016.

    Article  Google Scholar 

  4. Dong, W., Gu, G.-Y., Zhu, X., Ding, H.: A high-performance flight control approach for quadrotors using a modified active disturbance rejection technique. Robot. Auton. Syst. 83, 177–187 (2016). doi:10.1016/j.robot.2016.05.005. S0921889015300920

    Article  Google Scholar 

  5. Abaspour, A., Sadati, S.H., Sadeghi, M.: Nonlinear optimized adaptive trajectory control of helicopter. Control Theory and Technology 13(4), 297–310 (2015). doi:10.1007/s11768-015-4062-1.

    Article  MATH  Google Scholar 

  6. Lee, D., Franchi, A., Son, H.I., Ha, C., Bülthoff, H.H., Giordano, P.R.: Semiautonomous Haptic Teleoperation Control Architecture of Multiple Unmanned Aerial Vehicles. IEEE/ASME Transactions on Mechatronics 18(4), 1334–1345 (2013). doi:10.1109/TMECH.2013.2263963

    Article  Google Scholar 

  7. Bourquardez, O., Mahony, R., Guenard, N., Chaumette, F., Hamel, T., Eck, L.: Image-Based Visual Servo Control of the Translation Kinematics of a Quadrotor Aerial Vehicle. IEEE Trans. Robot. 25(3), 743–749 (2009). doi:10.1109/TRO.2008.2011419

    Article  Google Scholar 

  8. Augugliaro, F., D’Andrea, R.: Admittance control for physical human-quadrocopter interaction (2013)

  9. Lippiello, V., Ruggiero, F.: Exploiting redundancy in Cartesian impedance control of UAVs equipped with a robotic arm. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3768–3773 (2012), doi:10.1109/IROS.2012.6386021

  10. Pounds, P.E.I., Dollar, A.M.: UAV rotorcraft in compliant contact: Stability analysis and simulation. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2660–2667 (2011), doi:10.1109/IROS.2011.6095086

  11. Fumagalli, M., Naldi, R., Macchelli, A., Carloni, R., Stramigioli, S., Marconi, L.: Modeling and control of a flying robot for contact inspection. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3532–3537 (2012), doi:10.1109/IROS.2012.6385917

  12. Kalantari, A., Spenko, M.: Design and experimental validation of HyTAQ, a Hybrid Terrestrial and Aerial Quadrotor. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 4445–4450 (2013), doi:10.1109/ICRA.2013.6631208

  13. Prajna, S., van der Schaft, A., Meinsma, G.: An LMI approach to stabilization of linear port-controlled Hamiltonian systems. Syst. Control Lett. 45(5), 371–385 (2002). doi:10.1016/S0167-6911(01)00195-5.

    Article  MathSciNet  MATH  Google Scholar 

  14. Donaire, A., Junco, S.: On the addition of integral action to port-controlled Hamiltonian systems. Automatica 45(8), 1910–1916 (2009). doi:10.1016/j.automatica.2009.04.006.

    Article  MathSciNet  MATH  Google Scholar 

  15. Schaft, A.v.d.: L2 - Gain and Passivity Techniques in Nonlinear Control. Springer Science & Business Media. google-Books-ID: AInfBwAAQBAJ (2012)

  16. Ortega, R., Schaft, A.J.V.D., Mareels, I., Maschke, B.: Putting energy back in control. IEEE Control. Syst. 21(2), 18–33 (2001). doi:10.1109/37.915398

    Article  Google Scholar 

  17. Ortega, R., García-Canseco, E.: Interconnection and Damping Assignment Passivity-Based Control: A Survey. Eur. J. Control. 10(5), 432–450 (2004). doi:10.3166/ejc.10.432-450

    Article  MathSciNet  MATH  Google Scholar 

  18. Nageshrao, S., Lopes, G., Jeltsema, D., Babuška, R.: Interconnection and Damping Assignment Control via Reinforcement Learning. IFAC Proceedings 47(3), 1760–1765 (2014)

    Article  Google Scholar 

  19. González, H., Duarte-Mermoud, M.A., Pelissier, I., Travieso-Torres, J.C., Ortega, R.: A novel induction motor control scheme using IDA-PBC. J. Control Theory Appl. 6(1), 59–68 (2008). doi:10.1007/s11768-008-7193-9

    Article  MathSciNet  MATH  Google Scholar 

  20. Kotyczka, P., Koch, G., Pellegrini, E., Lohmann, B.: 8Th IFAC Symposium on Nonlinear Control SystemsTransparent Parametrization of Nonlinear IDA-PBC for a Hydraulic Actuator. IFAC Proceedings 43(14), 1122–1127 (2010)

    Article  Google Scholar 

  21. Neves, L.C., Paim, G.V., Queinnec, I., Moreno, U.F., De Pieri, E.R.: Passivity and Power Based Control of a Robot with Parallel Architecture*. IFAC Proceedings 44(1), 14608–14613 (2011).

    Article  Google Scholar 

  22. Valentinis, F., Donaire, A., Perez, T.: Energy-based motion control of a slender hull unmanned underwater vehicle. Ocean Eng. 104, 604–616 (2015). S0029801815001900

    Article  Google Scholar 

  23. Ryalat, M., Laila, D.S.: A simplified IDA-PBC design for underactuated mechanical systems with applications. Eur. J. Control. 27, 1–16 (2016). doi:10.1016/j.ejcon.2015.12.001.

    Article  MathSciNet  Google Scholar 

  24. Mersha, A.Y., Carloni, R., Stramigioli, S.: Port-based modeling and control of underactuated aerial vehicles. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 14–19 (2011)

  25. Muñoz, L.E., Santos, O., Castillo, P., Fantoni, I.: Energy-based nonlinear control for a quadrotor rotorcraft. In: 2013 American Control Conference, pp. 1177–1182 (2013), doi:10.1109/ACC.2013.6579995

  26. Guerrero, M.E., Mercado, D.A., Lozano, R., García, C.D.: Passivity based control for a quadrotor UAV transporting a cable-suspended payload with minimum swing. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 6718–6723 (2015), doi:10.1109/CDC.2015.7403277

  27. Bouzid, Y., Siguerdidjane, H., Bestaoui, Y.: Real time Autopilot based on Immersion & Invariance for Autonomous Aerial Vehicle. In: 20Th IFAC Symposium on Automatic Control in Aerospace -IFAC-PapersOnLine, vol. 49, no.17, pp. 176–181, 2016.

  28. Bouzid, Y., Siguerdidjane, H., Bestaoui, Y.: Improved 3d trajectory tracking by Nonlinear Internal Model-Feedback linearization control strategy for autonomous systems 49(9), 13–18 (2016). doi:10.1016/j.ifacol.2016.07.480. IFAC-PapersOnLine

  29. Bouzid, Y., Siguerdidjane, H., Bestaoui, Y.: Hierarchical Autopilot Design based on Immersion & Invariance and Nonlinear Internal Model Tracking Controllers for Autonomous system 49(5), 103–108 (2016). doi:10.1016/j.ifacol.2016.07.097. IFAC-PapersOnLine

  30. Huang, H., Hoffmann, G.M., Waslander, S.L., Tomlin , C.J.: Aerodynamics and control of autonomous quadrotor helicopters in aggressive maneuvering. In: IEEE International Conference on Robotics and Automation 2009, ICRA’09, pp. 3277–3282 (2009), doi:10.1109/ROBOT.2009.5152561

  31. Hoffmann, G.M., Huang, H., Waslander, S.L., Tomlin, C.J.: Precision flight control for a multi-vehicle quadrotor helicopter testbed. Control. Eng. Pract. 19 (9), 1023–1036 (2011). doi:10.1016/j.conengprac.2011.04.005. S0967066111000712

    Article  Google Scholar 

  32. Gupta, N.K., Goel, R., Ananthkrishnan, N.: Design/Development of Mini/Micro Air Vehicles through Modelling and Simulation: Case of an Autonomous Quadrotor. Def. Sc. Jl. 61(4), 337–345 (2011). doi:10.14429/dsj.61.1086. 1086

    Article  Google Scholar 

  33. Houck, C.R., Joines, J.A., Kay, M.G.: A Genetic Algorithm for Function Optimization: A Matlab implementation (1996)

  34. Engel, J., Sturm, J., Cremers, D.: Accurate Figure Flying with a Quadrocopter Using Onboard Visual and Inertial Sensing. In: Proceedings of the Workshop on Visual Control of Mobile Robots (ViCoMoR) at the IEEE/RJS International Conference on Intelligent Robot Systems (IROS), vol. 320 (2012)

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Y. Bouzid.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzid, Y., Siguerdidjane, H., Bestaoui, Y. et al. Energy Based 3D Autopilot for VTOL UAV Under Guidance & Navigation Constraints. J Intell Robot Syst 87, 341–362 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: