Journal of Intelligent & Robotic Systems

, Volume 85, Issue 1, pp 167–187 | Cite as

Fast Underwater Image Mosaicing through Submapping

  • Armagan Elibol
  • Jinwhan Kim
  • Nuno Gracias
  • Rafael Garcia
Article
  • 285 Downloads

Abstract

One of the most important features of mobile robots is their capability to gather data from areas beyond human reach. This capability has increased the demand for the use of robots undertaking exploration tasks, which has naturally led to the need for efficient methods to process the obtained data. Image mosaicing is a useful tool for obtaining a high-resolution visual representation of a large area that has been explored using optical sensors. In this paper, we present an efficient image mosaicing approach that utilizes submapping methods to obtain a map of a surveyed area with reduced computational effort. The approach uses a modified agglomerative hierarchical clustering method to form submaps according to similarity information obtained through feature descriptor matching, and takes advantage of this submapping to reduce the computation and time costs. Comparative results on real challenging underwater datasets are presented.

Keywords

Image mosaicing Visual mapping Underwater robotics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building Rome in a day. In: IEEE 12th international conference on computer vision, pp 72–79 (2009)Google Scholar
  2. 2.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features (2006)Google Scholar
  3. 3.
    Bingham, B., Foley, B., Singh, H., Camilli, R., Delaporta, K., Eustice, R., Mallios, A., Mindell, D., Roman, C., Sakellariou, D.: Robotic tools for deep water archaeology: surveying an ancient shipwreck with an autonomous underwater vehicle. J. Field Robot. 27(6), 702–717 (2010)CrossRefGoogle Scholar
  4. 4.
    Botterill, T., Mills, S., Green, R.: Bag-of-words-driven, single-camera simultaneous localization and mapping. J. Field Robot. 28(2), 204–226 (2011). doi:10.1002/rob.20368 CrossRefGoogle Scholar
  5. 5.
    Bulow, H., Birk, A.: Fast and robust photomapping with an unmanned aerial vehicle UAV. In: IEEE/RSJ international conference on intelligent robots and systems, 2009. IROS 2009, pp 3368–3373 (2009)Google Scholar
  6. 6.
    Caballero, F., Merino, L., Ferruz, J., Ollero, A.: Homography based Kalman filter for mosaic building. applications to UAV position estimation. In: IEEE international conference on robotics and automation, pp 2004–2009 (2007)Google Scholar
  7. 7.
    Choukroun, A., Charvillat, V.: Bucketing techniques in robust regression for computer vision, vol. 2749, pp 609–616 (2003)Google Scholar
  8. 8.
    Day, W.E., Edelsbrunner, H.: Efficient algorithms for agglomerative hierarchical clustering methods. J. Classif. 1, 7–24 (1984)CrossRefMATHGoogle Scholar
  9. 9.
    Donovan, G.T.: Position error correction for an autonomous underwater vehicle inertial navigation system (ins) using a particle filter. IEEE J. Ocean. Eng. 37(3), 431–445 (2012)CrossRefGoogle Scholar
  10. 10.
    Elibol, A., Gracias, N., Garcia, R.: Fast topology estimation for image mosaicing using adaptive information thresholding. Robot. Auton. Syst. 61(2), 125–136 (2013)CrossRefGoogle Scholar
  11. 11.
    Escartin, J., Garcia, R., Delaunoy, O., Ferrer, J., Gracias, N., Elibol, A., Cufi, X., Neumann, L., Fornari, D.J., Humpris, S.E., Renard, J.: Globally aligned photomosaic of the Lucky Strike hydrothermal vent field (Mid-Atlantic Ridge, 3718.5’N): Release of georeferenced data, mosaic construction, and viewing software. Geochem. Geophys. Geosyst. 9(12), Q12,009 (2008)CrossRefGoogle Scholar
  12. 12.
    Estrada, C., Neira, J., Tardos, J.: Hierarchical SLAM: real-time accurate mapping of large environments. IEEE Trans. Robot. 21(4), 588–596 (2005)CrossRefGoogle Scholar
  13. 13.
    Ferreira, F., Veruggio, G., Caccia, M., Bruzzone, G.: An online slam-based mosaicking using local maps for ROVs. In: IEEE international conference on robotics and automation (ICRA), pp 1058–1063 (2011)Google Scholar
  14. 14.
    Ferreira, F., Veruggio, G., Caccia, M., Bruzzone, G.: Real-time optical SLAM-based mosaicking for unmanned underwater vehicles. Intel. Serv. Robotics 5, 55–71 (2012)CrossRefGoogle Scholar
  15. 15.
    Garcia, R., Cufi, X., Ridao, P., Carreras, M.: Constructing photo-mosaics to assist uuv navigation and station-keeping. In: Robotics and automation in the maritime industries, pp 195–234 (2006)Google Scholar
  16. 16.
    Garcia, R., Gracias, N.: Detection of interest points in turbid underwater images. In: Proceedings of the Oceans MTS/IEEE, pp. 1–9 (2011)Google Scholar
  17. 17.
    Garcia, R., Nicosevici, T., Cufí, X.: On the way to solve lighting problems in underwater imaging. In: Proceedings of the Oceans MTS/IEEE OCEANS 2002, vol. 2, pp. 1018–1024. IEEE (2002)Google Scholar
  18. 18.
    GNOM Standard ROV. Retrieved from (2014). http://www.gnom-rov.com/products/gnom-standard/
  19. 19.
    Gracias, N., Costeira, J.P., Victor, J.S.: Linear global mosaics for underwater surveying. In: 5th IFAC Symposium on Intelligent Autonomous Vehicles, vol. I. Lisbon, Portugal (2004)Google Scholar
  20. 20.
    Gracias, N., Negahdaripour, S., Neumann, L., Prados, R., Garcia, R.: A motion compensated filtering approach to remove sunlight flicker in shallow water images. In: Proceedings of the Oceans MTS/IEEE OCEANS 2008, pp. 1–7. IEEE (2008)Google Scholar
  21. 21.
    Gracias, N., Ridao, P., Garcia, R., Escartin, J., L’Hour, M., Cibecchini, F., Campos, R., Carreras, M., Ribas, D., Palomeras, N., Magi, L., Palomer, A., Nicosevici, T., Prados, R., Hegedus, R., Neumann, L., de Filippo, F., Mallios, A.: Mapping the moon: Using a lightweight auv to survey the site of the 17th century ship ’La Lune’. In: Proceedings of the Oceans MTS/IEEE OCEANS 2013, pp 1–8 (2013), doi:10.1109/OCEANS-Bergen.2013.6608142
  22. 22.
    Gracias, N., Zwaan, S., Bernardino, A., Santos-Victor, J.: Mosaic based navigation for autonomous underwater vehicles. IEEE J. Ocean. Eng. 28(4), 609–624 (2003)CrossRefGoogle Scholar
  23. 23.
    Haralick, R.M.: Propagating covariance in computer vision. In: 9. Theoretical Foundations of Computer Vision, pp. 95–114 (1998)Google Scholar
  24. 24.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Harlow, UK (2004)Google Scholar
  25. 25.
    Ho, K., Newman, P.: Multiple map intersection detection using visual appearance. In: International Conference on Computational Intelligence, Robotics and Autonomous Systems (2005)Google Scholar
  26. 26.
    Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Kekec, T., Yildirim, A., Unel, M.: A new approach to real-time mosaicing of aerial images. Robot. Auton. Syst. 62(12), 1755–1767 (2014)CrossRefGoogle Scholar
  28. 28.
    Leonard, J., Newman, P.: Consistent, convergent, and constant-time SLAM. In: Proceedings of the 18th international joint conference on Artificial intelligence, IJCAI’03, pp 1143–1150 (2003)Google Scholar
  29. 29.
    Leone, A., Distante, C., Mastrolia, A., Indiverr, G.: A fully automated approach for underwater mosaicking. In: MTS/IEEE OCEANS Conference, Boston, USA, pp 1–6 (2006)Google Scholar
  30. 30.
    Liang, Z., Chen, Y.: Closed-loop detection algorithm using visual words. Int. J. Robot. Autom. 29(2), 3857–3872 (2014)MathSciNetGoogle Scholar
  31. 31.
    Lirman, D., Gracias, N., Gintert, B., Gleason, A., Reid, R.P., Negahdaripour, S., Kramer, P.: Development and application of a video–mosaic survey technology to document the status of coral reef communities. Environ. Monit. Assess. 159, 59–73 (2007)CrossRefGoogle Scholar
  32. 32.
    Marcon, Y.: LAPMv2: An improved tool for underwater large-area photo-mosaicking. In: IEEE Oceans-St. John’s, 2014, pp. 1–10 (2014)Google Scholar
  33. 33.
    Nemhauser, G.L., Wolsey, L.A.: Integer and combinatorial optimization. Wiley-Interscience (1988)Google Scholar
  34. 34.
    Park, J.Y., Choi, J.Y., Jeong, E.Y.: Applying an underwater photography technique to nearshore benthic mapping: A case study in a rocky shore environment. J. Coast. Res. SI 64, 1764–1768 (2011)Google Scholar
  35. 35.
    Pizarro, O., Williams, S.B., Jakuba, M.V., Johnson-Roberson, M., Mahon, I., Bryson, M., Steinberg, D., Friedman, A., Dansereau, D., Nourani-Vatani, N., Bongiorno, D., Bewley, M., Bender, A., Ashan, N., Douillard, B.: Benthic monitoring with robotic platforms – the experience of Australia. In: IEEE International Underwater Technology Symposium (UT), pp. 1–10 (2013)Google Scholar
  36. 36.
    Prados, R., Garcia, R., Neumann, L.: Image blending techniques and their application in underwater mosaicing. Springer (2014)Google Scholar
  37. 37.
    Ribas, D., Palomeras, N., Ridao, P., Carreras, M., Hernandez, E.: Ictineu AUV wins the first SAUC-E competition. In: IEEE International Conference on Robotics and Automation. Roma, Italy (2007)Google Scholar
  38. 38.
    Ribas, D., Palomeras, N., Ridao, P., Carreras, M., Mallios, A.: Girona 500 AUV: From survey to intervention. IEEE/ASME Trans. Mechatron. 17(1), 46–53 (2012)CrossRefGoogle Scholar
  39. 39.
    Rzhanov, Y., Gu, F.: Enhancement of underwater videomosaics for post-processing. In: Proceedings of the Oceans MTS/IEEE OCEANS 2007, pp. 1–6. IEEE (2007)Google Scholar
  40. 40.
    Sawhney, H., Hsu, S., Kumar, R.: Robust video mosaicing through topology inference and local to global alignment. In: European Conference on Computer Vision, vol. II, pp. 103–119. Freiburg, Germany (1998)Google Scholar
  41. 41.
    Scaradozzi, D., Sorbi, L., Zoppini, F., Gambogi, P.: Tools and techniques for underwater archaeological sites documentation. In: Oceans - San Diego, 2013, pp. 1–6 (2013)Google Scholar
  42. 42.
    Schettini, R., Corchs, S.: Underwater image processing: state of the art of restoration and image enhancement methods. EURASIP Journal on Advances in Signal Processing 2010, 14 (2010)Google Scholar
  43. 43.
    SeaBotix LBV150-4 MiniROV. Retrieved from (2013). http://www.seabotix.com/products/lbv150-4.htm
  44. 44.
    Skiena, S.: Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Addison-Wesley, Reading, MA (1990)Google Scholar
  45. 45.
    Castanheira: de Souza, R.H., Okutomi, M., Torii, A.: Real-time image mosaicing using non-rigid registration. In: Advances in Image and Video Technology, Lecture Notes in Computer Science, vol. 7087, pp 311–322 (2012)Google Scholar
  46. 46.
    Williams, S.B., Pizarro, O.R., Jakuba, M.V., Johnson, C.R., Barrett, N.S., Babcock, R.C., Kendrick, G.A., Steinberg, P.D., Heyward, A.J., Doherty, P.J., et al.: Monitoring of benthic reference sites: using an autonomous underwater vehicle. IEEE Robot. Autom. Mag. 19(1), 73–84 (2012)CrossRefGoogle Scholar
  47. 47.
    Zhu, Z., Riseman, E., Hanson, A., Schultz, H.: An efficient method for geo-referenced video mosaicing for environmental monitoring. Mach. Vis. Appl. 16(4), 203–216 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Armagan Elibol
    • 1
    • 2
  • Jinwhan Kim
    • 3
  • Nuno Gracias
    • 4
  • Rafael Garcia
    • 4
  1. 1.School of Integrated TechnologyYonsei Institute of Convergence Technology, Yonsei UniversityIncheonRepublic of Korea
  2. 2.Department of Mathematical EngineeringYildiz Technical UniversityIstanbulTurkey
  3. 3.Mobile Robotics and Intelligence Laboratory, Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
  4. 4.Computer Vision and Robotics InstituteUniversity of GironaGironaSpain

Personalised recommendations