Journal of Intelligent & Robotic Systems

, Volume 85, Issue 2, pp 245–275 | Cite as

Link Estimation in Robot Networks for Multi-Radio Control and Range Extension

  • Christopher J. LowranceEmail author
  • Adrian P. Lauf


Several existing and emerging robotic applications such as ordnance disposal, disaster assessment, and search-and-rescue require high-speed communication links to span large distances. Path loss, combined with other wireless propagation effects, makes this a challenging problem. Directing radio frequency (RF) transmissions toward the intended receiver can mitigate this issue; however, operating smart antenna technology is costly for resource-constrained robots, and its performance degrades in light-of-sight (LOS) conditions, which is common in outdoor scenarios. In order to overcome this challenge, we propose adding a secondary radio, combined with a passive reflector, which is only employed when the primary omnidirectional radio is deemed unreliable. The dynamic switching of the directional radio between sleep and idle states provides communication diversity, while striving to conserve energy for battery-powered systems. An efficient link quality (LQ) estimator based on fuzzy logic provides the intelligence necessary to perform the radio switching action. Our method of passively assessing LQ at the transmitter is shown to be more efficient and agile than other presented LQ estimators, while still remaining effective in dynamic environments.


Wireless robot networks Link quality estimation Fuzzy control Radio switching Directional antennas Mobile ad hoc networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maxwell, P., Larkin, D., Lowrance, C.: Turning Remote-Controlled military systems into autonomous force multipliers. IEEE Potentials 32(6), 39–43 (2013). doi: 10.1109/MPOT.2013.2252240 CrossRefGoogle Scholar
  2. 2.
    Nguyen, H.G., Pezeshkian, N., Hart, A., Burmeister, A., Holz, K., Neff, J., Roth, L.: Evolution of a radio communication relay system. In: Proceedings of the SPIE 8741, Unmanned Systems Technology XV, May 17, 2013, pp. 87410H–87418Google Scholar
  3. 3.
    Pezeshkian, N., Neff, J.D., Hart, A.: Link quality estimator for a mobile robot. In: 9th International Conference on Informatics in Control, Automation and Robotics (ICINCO), Rome, Italy (2012)Google Scholar
  4. 4.
    Zeiger, F., Kraemer, N., Sauer, M., Schilling, K.: Challenges in realizing ad-hoc networks based on wireless LAN with mobile robots. In: 6th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks and Workshops, 2008, pp. 632–639 (2008)Google Scholar
  5. 5.
    Strickland, E.: Fukushima’s next 40 years. IEEE Spectr. 51(3), 46–53 (2014). doi: 10.1109/MSPEC.2014.6745884 CrossRefGoogle Scholar
  6. 6.
    Samad, T., Bay, J.S., Godbole, D.: Network-centric Systems for Military Operations in Urban Terrain: The Role of UAVs. Proc. IEEE 95(1), 92–107 (2007). doi: 10.1109/JPROC.2006.887327 CrossRefGoogle Scholar
  7. 7.
    Mostofi, Y., Gonzalez-Ruiz, A., Gaffarkhah, A., Ding, L.: Characterization and modeling of wireless channels for networked robotic and control systems - a comprehensive overview. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009. IROS 2009, pp. 4849–4854 (2009)Google Scholar
  8. 8.
    Twigg, J.N., Fink, J., Yu, P.L., Sadler, B.M.: Efficient base station connectivity area discovery (2013)Google Scholar
  9. 9.
    Byung-Cheol, M., Matson, E.T., Khaday, B.: Design of a networked robotic system capable of enhancing wireless communication capabilities. In: 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 1–8 (2013)Google Scholar
  10. 10.
    Ko, Y.B., Vaidya, N.H.: Location-Aided Routing (LAR) in mobile ad hoc networks. Wireless Netw. 6(4), 307–321 (2000)Google Scholar
  11. 11.
    Macone, D., Oddi, G., Pietrabissa, A.: MQ-Routing: Mobility-, GPS- and energy-aware routing protocol in MANETs for disaster relief scenarios. Ad Hoc Networks 11(3), 861–878 (2013). doi: 10.1016/j.adhoc.2012.09.008
  12. 12.
    Veness, C.: Calculate distance and bearing between two Latitude/Longitude points using Haversine formula in JavaScript. Movable Type Scripts (2011)Google Scholar
  13. 13.
    Lowrance, C.J., Lauf, A.P.: Adding transmission diversity to unmanned systems through radio switching and directivity. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp. 3788–3793 (2014)Google Scholar
  14. 14.
    Hood, B.N., Barooah, P.: Estimating DoA From Radio-Frequency RSSI Measurements Using an Actuated Reflector. IEEE Sensors J. 11(2), 413–417 (2011). doi: 10.1109/JSEN.2010.2070872 CrossRefGoogle Scholar
  15. 15.
    Dai, H.-N., Ng, K.-W., Li, M., Wu, M.-Y.: An overview of using directional antennas in wireless networks. Int. J. Commun. Syst. 26(4), 413–448 (2013). doi: 10.1002/dac.1348 CrossRefGoogle Scholar
  16. 16.
    Santivanez, C., Redi, J.: On the use of directional antennas for sensor networks. In: 2003 IEEE Military Communications Conference, 2003. MILCOM ’03, vol. 671, pp. 670–675 (2003)Google Scholar
  17. 17.
    Goldsmith, A.: Wireless Communications. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  18. 18.
    Ye, T., Xu, K., Ansari, N.: TCP In wireless environments: problems and solutions. IEEE Commun. Mag. 43(3), S27–S32 (2005). doi: 10.1109/MCOM.2005.1404595 CrossRefGoogle Scholar
  19. 19.
    Gage, D.W.: Network protocols for mobile robot systems. In: 1998, pp. 107–118. doi: 10.1117/12.299558
  20. 20.
  21. 21.
    Souryal, M.R., Geissbuehler, J., Miller, L.E., Moayeri, N.: Real-time deployment of multihop relays for range extension. Paper presented at the Proceedings of the 5th international conference on Mobile systems, applications and services, San Juan, Puerto RicoGoogle Scholar
  22. 22.
    Yi, S., Pei, Y., Kalyanaraman, S., Azimi-Sadjadi, B.: How is the capacity of ad hoc networks improved with directional antennas? Wireless Netw. 13(5), 635–648 (2007). doi: 10.1007/s11276-006-8147-0 CrossRefGoogle Scholar
  23. 23.
    Witus, G., Hunt, S., Janicki, P.: Methods for UGV teleoperation with high latency communications. In: 2011, pp. 80450N–80458Google Scholar
  24. 24.
    Stojcsics, D., Somlyai, L.: Improvement methods of short range and low bandwidth communication for small range UAVs. In: 2010 8th International Symposium on Intelligent Systems and Informatics (SISY), pp. 93–97 (2010)Google Scholar
  25. 25.
    Bapna, D., Rollins, E., Foessel, A., Whittaker, R.: Antenna pointing for high bandwidth communications from mobile robots. In: Proceedings of the 1998 IEEE International Conference on Robotics and Automation, 1998, vol. 3464, pp. 3468–3473 (1998)Google Scholar
  26. 26.
    Vlavianos, A., Law, L.K., Broustis, I., Krishnamurthy, S.V., Faloutsos, M.: Assessing link quality in IEEE 802.11 Wireless Networks: Which is the right metric?. In: IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, 2008. PIMRC 2008, pp. 1–6 (2008)Google Scholar
  27. 27.
    Boano, C.A., Zuniga, M.A., Voigt, T., Willig, A., Rmer, K.: The Triangle Metric: Fast Link Quality Estimation for Mobile Wireless Sensor Networks. In: 2010 Proceedings of 19th International Conference on Computer Communications and Networks (ICCCN), pp. 1–7 (2010)Google Scholar
  28. 28.
    IEEE: IEEE Std 802.11. In: Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications (2012)Google Scholar
  29. 29.
    Barker, J.: You believe you understand what you think i said: The truth about 802.11 signal and noise metrics. (2004)Google Scholar
  30. 30.
    Reis, C., Mahajan, R., Rodrig, M., Wetherall, D., Zahorjan, J.: Measurement-based models of delivery and interference in static wireless networks. SIGCOMM Comput. Commun. Rev. 36(4), 51–62 (2006). doi: 10.1145/1151659.1159921 CrossRefGoogle Scholar
  31. 31.
    Ko, J., Chang, M.: Momoro: Providing Mobility Support for Low-Power Wireless Applications. IEEE Syst. J. PP(99), 1–10 (2014). doi: 10.1109/JSYST.2014.2299592 Google Scholar
  32. 32.
    Baccour, N., Kouba, A., Youssef, H., Ben Jama, M., do Rosr̈io, D., Alves, M., Becker, L.: F-LQE: a Fuzzy Link Quality Estimator for Wireless Sensor Networks. In: Silva, J., Krishnamachari, B., Boavida, F. (eds.) Lecture Notes in Computer Science and Wireless Sensor Networks, vol. 5970, pp. 240–255. Springer, Berlin (2010)Google Scholar
  33. 33.
    Zhi-Qiang, G., Qin, W., Mo-Han, L., Jie, H.: Fuzzy logic based multidimensional link quality estimation for Multi-Hop wireless sensor networks. IEEE Sensors J. 13(10), 3605–3615 (2013). doi: 10.1109/JSEN.2013.2272054 CrossRefGoogle Scholar
  34. 34.
    Navda, V., Subramanian, A.P., Dhanasekaran, K., Timm-Giel, A., Das, S.: MobiSteer: using steerable beam directional antenna for vehicular network access. Paper presented at the Proceedings of the 5th international conference on Mobile systems, applications and services, San Juan, Puerto RicoGoogle Scholar
  35. 35.
    Ramanathan, R., Redi, J., Santivanez, C., Wiggins, D., Polit, S.: Ad hoc networking with directional antennas: a complete system solution. IEEE Journal on Selected Areas in Communications 23(3), 496–506 (2005). doi: 10.1109/JSAC.2004.842556 CrossRefGoogle Scholar
  36. 36.
    Gesbert, D., Kountouris, M., Heath, R.W., Chan-Byoung, C., Salzer, T.: Shifting the MIMO paradigm. IEEE Signal Proc. Mag. 24(5), 36–46 (2007). doi: 10.1109/MSP.2007.904815 CrossRefGoogle Scholar
  37. 37.
    Lilly, J.H.: Fuzzy control and identification. Wiley, Hoboken (2010)CrossRefzbMATHGoogle Scholar
  38. 38.
    Srinivasan, K., Dutta, P., Tavakoli, A., Levis, P.: Understanding the causes of packet delivery success and failure in dense wireless sensor networks. Paper presented at the Proceedings of the 4th international conference on Embedded networked sensor systems, Boulder, Colorado, USAGoogle Scholar
  39. 39.
    Srinivasan, K., Levis, P.: RSSI is under Appreciated. In: Proceedings of the Third Workshop on Embedded Networked Sensors (Emnets 2006) (2006)Google Scholar
  40. 40.
    Baccour, N., Koubaa, A., Mottola, L., Zuniga, M.A., Youssef, H., Boano, C.A., Alves, M.: Radio link quality estimation in wireless sensor networks: a survey. ACM Transactions on Sensor Networks (TOSN) 8(4), 34 (2012)CrossRefGoogle Scholar
  41. 41.
    IEEE: IEEE Standard for Local and metropolitan area networks–Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) (2011)Google Scholar
  42. 42.
    Liu, L., Li, J., Shu, J., Wu, Z., Chen, Y.: CCI-Based link quality estimation mechanism for wireless sensor networks under perceive packet loss. J. Softw. 5(4), 387–395 (2010)CrossRefGoogle Scholar
  43. 43.
    De Couto, D.S., Aguayo, D., Bicket, J., Morris, R.: A high-throughput path metric for multi-hop wireless routing. Wireless Netw. 11(4), 419–434 (2005)CrossRefGoogle Scholar
  44. 44.
    Wapf, A., Souryal, M.R.: Measuring Indoor Mobile Wireless Link Quality. In: IEEE International Conference on Communications, 2009. ICC ’09, pp. 1–6 (2009)Google Scholar
  45. 45.
    Huang, L., Lai, T.-H.: On the Scalability of IEEE 802.11 Ad hoc Networks. In: Proceedings of the 3rd ACM International Symposium on Mobile Ad hoc Networking and Computing 2002, pp. 173-182Google Scholar
  46. 46.
    Bing, Q., Biaz, S., Fangyang, S.: Accurate Assessment of Link Loss Rate in Wireless Mesh Networks. In: 2010 Seventh International Conference on Information Technology: New Generations (ITNG), pp. 862–866 (2010)Google Scholar
  47. 47.
  48. 48.
    Realtek: RTL8192CU, Single-Chip IEEE 802.11b/g/n 2T2R WLAN Controller with USB 2.0 Interface.
  49. 49.
  50. 50.
    Sklar, B.: Digital communications, vol. 2. Prentice Hall, NJ (2001)Google Scholar
  51. 51.
    Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J. Artif. Intell. Res., 237–285 (1996)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Computer Engineering and Computer Science, J.B. Speed School of EngineeringUniversity of LouisvilleLouisvilleUSA

Personalised recommendations