Journal of Intelligent & Robotic Systems

, Volume 84, Issue 1–4, pp 691–703 | Cite as

GPS Denied UAV Routing with Communication Constraints

  • Satyanarayana G. Manyam
  • Sivakumar Rathinam
  • Swaroop Darbha
  • David Casbeer
  • Yongcan Cao
  • Phil Chandler


A novel GPS denied routing problem for UAVs is described, where the UAVs cooperatively navigate through a restricted zone deployed with noncommunicating Unattended Ground Sensors (UGS). The routing algorithm presenting in this paper ensures the UAVs maintain strict contact with at least one UGS, which allows the UGS act as beacons for relative navigation eliminating the need for dead reckoning. This problem is referred to as the Communication Constrained UAV Routing Problem (CCURP). Two architectures for cooperative navigation of two or three UAVs are considered. For the two UAV problem, a \(\frac {9}{2}\)-approximation algorithm is developed. The three UAV problem is transformed into a one-in-a-set Traveling Salesman Problem (TSP), which is solved as a regular asymmetric TSP using existing methods after applying a second transformation. Computational results corroborating the performance bounds are presented.


UAV route planning Cooperative localization GPS-denied environments Approximation algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Applegate, D., Bixby, R., Chvatal, V., Cook, W.: Concorde tsp solver. See: (2005)
  2. 2.
    Cao, Y., Muse, J., Casbeer, D., Kingston, D.: Circumnavigation of an unknown target using uavs with range and range rate measurements. In: IEEE 52nd Annual Conference on Decision and Control (CDC), 2013, pp. 3617–3622 (2013)Google Scholar
  3. 3.
    Casbeer, D.W., Krishnamoorthy, K., Eggert, A., Chandler, P., Pachter, M.: Optimal search for a random moving intruder. In: AIAA Infotech@Aerospace Conference (2012)Google Scholar
  4. 4.
    Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Tech. Rep. Technical Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh PA (1976)Google Scholar
  5. 5.
    Gebre-Egziabher, D., Taylor, B.: Impact and mitigation of gps-unavailability on small uav navigation, guidance and control. Tech. rep., Report 2012-2, University of Minnesota Department of Aerospace Engineering and Mechanics (2012)Google Scholar
  6. 6.
    Hashemi, A., Cao, Y., Casbeer, D.W., Yin, G.: Unmanned aerial vehicle circumnavigation using noisy range-based measurements without global positioning system information. J. Dyn. Syst. Meas. Control. 137, 31,009–31,019 (2015)CrossRefGoogle Scholar
  7. 7.
    Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman heuristic. European Journal of Operational Research 126(1), 106–130 (2000). doi: 10.1016/S0377-2217(99)00284-2. MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Oberlin, P., Rathinam, S., Darbha, S.: Today’s traveling salesman problem. IEEE Robot. Autom. Mag. 17(4), 70–77 (2010)Google Scholar
  9. 9.
    Jonker, R., Volgenant, T.: Transforming asymmetric into symmetric traveling salesman problems. Oper. Res. Lett. 2(4), 161–163 (1983)CrossRefzbMATHGoogle Scholar
  10. 10.
    Kerns, A.J., Shepard, D.P., Bhatti, J.A., Humphreys, T.E.: Unmanned aircraft capture and control via GPS spoofing. J. Field Rob. 31(4), 617–636 (2014)CrossRefGoogle Scholar
  11. 11.
    Krishnamoorthy, K., Casbeer, D.W., Chandler, P., Pachter, M., Darbha, S.: UAV Search Andamp; Capture of a Moving Ground Target under Delayed Information. In: IEEE Conference on Decision and Control (2012)Google Scholar
  12. 12.
    Malik, W., Rathinam, S., Darbha, S.: An approximation algorithm for a symmetric generalized multiple depot, multiple travelling salesman problem. Oper. Res. Lett. 35(6), 747–753 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Manyam, S., Rathinam, S., Darbha, S.: Computation of Lower Bounds for a Multiple Depot, Multiple Vehicle Routing Problem with Motion Constraints. In: IEEE 52Nd Annual Conference on Decision and Control (CDC), 2013, pp. 2378–2383 (2013)Google Scholar
  14. 14.
    Manyam, S., Rathinam, S., Darbha, S., Casbeer, D., Chandler, P.: Routing of Two Unmanned Aerial Vehicles with Communication Constraints. In: International Conference on Unmanned Aircraft Systems (ICUAS), 2014, pp. 140–148 (2014)Google Scholar
  15. 15.
    Manyam, S.G., Rathinam, S., Darbha, S.: Computation of lower bounds for multiple depot, multiple vehicle routing problem with motion constraints. ASME J. Dyn. Syst. Meas. Control. 137(9), 094,501–094,501-5 (2015)CrossRefGoogle Scholar
  16. 16.
    Noon, C.E., Bean, J.C.: An efficient transformation of the generalized traveling salesman problem. INFOR 31(1), 39–44 (1993)zbMATHGoogle Scholar
  17. 17.
    Potyagaylo, S., Rand, O., Kanza, Y.: Motion Planning for an Autonomous Helicopter in a Gps-Denied Environment. In: Proceedings of the American Helicopter Society 66Th Annual Forum, Phoenix, AZ, USA (2010)Google Scholar
  18. 18.
    Rathinam, S., Sengupta, R., Darbha, S.: Resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Trans. Autom. Sci. Eng. 4(1), 98–104 (2007)CrossRefGoogle Scholar
  19. 19.
    Reinelt, G.: Tsplib—a traveling salesman problem library. ORSA J. Comput. 3(4), 376–384 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Shames, I., Dasgupta, S., Fidan, B., Anderson, B.: Circumnavigation using distance measurements under slow drift. IEEE Trans. Autom. Control 57(4), 889–903 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Steiglitz, K., Papadimitriou, C.H.: Combinatorial Optimization: Algorithms and Complexity. Prentice Hall, New Jersey (1982)zbMATHGoogle Scholar
  22. 22.
    Summers, T.H., Akella, M.R., Mears, M.J.: Coordinated standoff tracking of moving targets: control laws and information architectures. J. Guid. Control. Dyn. 32(1), 56–69 (2009)CrossRefGoogle Scholar
  23. 23.
    Sundar, K., Rathinam, S.: Algorithms for routing an unmanned aerial vehicle in the presence of refueling depots. IEEE Trans. Autom. Sci. Eng. 11(1), 287–194 (2014)CrossRefGoogle Scholar
  24. 24.
    Sundar, K., Rathinam, S.: Generalized multiple depot traveling salesman problem - polyhedral study and exact algorithm. Journal of Computers and Operations Research (2015). doi: 10.1016/j.cor.2015.12.014
  25. 25.
    Warwick, G.: Lightsquared tests confirm GPS jamming. Aviation Week (2011)Google Scholar
  26. 26.
    Wu, A.D., Johnson, E.N., Kaess, M., Dellaert, F., Chowdhary, G.: Autonomous flight in gps-denied environments using monocular vision and inertial sensors. Journal of Aerospace Information Systems 10(4), 172–186 (2013)CrossRefGoogle Scholar
  27. 27.
    Yadlapalli, S., Malik, W., Darbha, S., Pachter, M.: A lagrangian based algorithm for a multiple depot, multiple traveling salesman problem. Nonlinear Anal. Real World Appl. 10(4), 1990–1999 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Satyanarayana G. Manyam
    • 1
  • Sivakumar Rathinam
    • 2
  • Swaroop Darbha
    • 2
  • David Casbeer
    • 1
  • Yongcan Cao
    • 1
  • Phil Chandler
    • 1
  1. 1.Control Science Center of Excellence, Air Force Research LaboratoryWPAFBDaytonUSA
  2. 2.Department of Mechanical EngineeringTexas A & M UniversityCollege StationUSA

Personalised recommendations