Skip to main content

Advertisement

Log in

Trajectory Tracking Control for Quadrotor Robot Subject to Payload Variation and Wind Gust Disturbance

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This work proposes a hierarchical nonlinear control scheme for quadrotor to track 3D trajectory subject to payload variation and fast time-varying wind gust disturbance. In terms of dynamics model, the 6 DOF dynamics model with parametric and nonparametric uncertainties is built up. Wind gust and propeller momentum drag model are implemented to quantify the wind impact (force and moment disturbances) on quadrotor. In terms of control design, adaptive robust controller is developed for dynamic subsystem to deal with moment disturbance and estimate the system parameters. Global sliding mode controller is implemented for kinematic subsystem to generate adequate desired attitude angles for tracking the planned 3D trajectory. Simulations and experiments under various conditions are carried out for verification, and the results indicate the effectiveness, adaptiveness and robustness of the control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Escareño, J., Salazar, S., Romero, H., Lozano, R.: Trajectory control of a quadrotor subject to 2D wind disturbances. J. Intell. Robot Syst. 70, 51–63 (2013)

    Article  Google Scholar 

  2. Kerma, M., et al.: Nonlinear H control of a Quadrotor (UAV), using high order sliding mode disturbance estimator. International Journal of Control 85.12, 1876–1885 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Raffo, G.V., Ortega, M.G., Rubio, F.R.: An integral predictive/nonlinear H control structure for a quadrotor helicopter. Automatica 46.1, 29–39 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alexis, K., Nikolakopoulos, G., Tzes, A.: Experimental model predictive attitude tracking control of a quadrotor helicopter subject to wind-gusts. In: 2010 18th Mediterranean Conference on Control & Automation (MED). IEEE (2010)

  5. Alexis, K., Nikolakopoulos, G., Tzes, A.: Switching model predictive attitude control for a quadrotor helicopter subject to atmospheric disturbances. Control. Eng. Pract. 19.10, 1195–1207 (2011)

    Article  Google Scholar 

  6. Alexis, K., Nikolakopoulos, G., Tzes, A.: Model predictive quadrotor control: attitude, altitude and position experimental studies. Control Theory Appl., IET 6.12, 1812–1827 (2012)

    Article  MathSciNet  Google Scholar 

  7. Coza, C., Nicol, C., Macnab, C.J.B., Ramirez-Serrano, A.: Adaptive fuzzy control for a quadrotor helicopter robust to wind buffeting. J. Intell. Fuzzy Syst. 22, 267–283 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Fang, Z., Gao, W.: Adaptive integral backstepping control of a micro-quadrotor. In: 2011 2nd international conference on intelligent control and information processing (ICICIP), vol. 2. IEEE (2011)

  9. Cabecinhas, D., Cunha, R., Silvestre, C.: Experimental validation of a globally stabilizing feedback controller for a quadrotor aircraft with wind disturbance rejection. In: American control conference (ACC). IEEE (2013)

  10. Chen, Y., He, Y., Zhou, M., He, Y., Zhou, M.: Modeling and control of a quadrotor helicopter system under impact of wind field (2013)

  11. Mellinger, D., et al.: Design, modeling, estimation and control for aerial grasping and manipulation. In: 2011 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE (2011)

  12. Wang, C., Nahon, M., Trentini, M., Nahon, M., Trentini, M.: Controller development and validation for a small quadrotor with compensation for model variation. In: 2014 International conference on unmanned aircraft systems (ICUAS). IEEE (2014)

  13. Min, B.-C., Hong, J.-H., Matson, E.T.: Adaptive robust control (ARC) for an altitude control of a quadrotor type UAV carrying an unknown payloads. In: 2011 11th International conference on control, automation and systems Korea, pp. 26–29 (2011)

  14. Nahon, M., Gilardi, G., Lambert, C.: Dynamics/control of a radio telescope receiver supported by a tethered aerostat. J. Guid. Control. Dyn. 25.6, 1107–1115 (2002)

    Article  Google Scholar 

  15. Etkin, B.: Dynamics of atmospheric flight, pp. 529–543. Wiley, New York (1972)

    Google Scholar 

  16. Guerrero, I., Londenberg, K., Gelhausen, P., Myklebust, A.: A powered lift aerodynamic analysis for the design of ducted fan UAVs, pp. 2003–6567. AIAA Paper (2003)

  17. Selig, M.S.: Modeling propeller aerodynamics and slipstream effects on small UAVs in realtime, p 7938. AIAA Paper (2010)

  18. Selig, M. S.: Modeling full-envelope aerodynamics of small UAVs in realtime, pp. 2010–7635. AIAA Paper (2010)

  19. Ikhouane, F., Fernández, V. M., Rodellar, J.: Adaptive backstepping control of a class of uncertain nonlinear systems: application to Bouc-Wen hysteretic oscillators, p 13. CRM (2003)

  20. Benallegue, A., Mokhtari, A., Fridman, L.: High-order sliding-mode observer for a quadrotor UAV. Int. J. Robust Nonlinear Control 18, 427–440 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xu, R., Ozguner, U.: Sliding mode control of a quadrotor helicopter. In: Proceedings of the 45th IEEE, conference on decision and control, pp. 4957–4962, San Diego (2006)

  22. Sharifi, F., Mirzaei, M., Gordon, B.W., Zhang, Y.: Fault tolerant control of a quadrotor UAV using sliding mode control. In: Proceedings of the conference on control and fault tolerant systems, pp. 239–244, Nice (2010)

  23. Mockhtari, A., Benalegue, A., Orlov, Y.: Exact linearization and sliding mode observer for a quadrotor unmanned aerial vehicle. Int. J. Robot. Autom. 21(1), 39–49 (2006)

    Google Scholar 

  24. Besnard, L., Shtessel, Y. B., Landrum, B.: Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer[J]. J. Frankl. Inst. 349(2), 658–684 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Luque-Vega, L., Castillo-Toledo, B., Loukianov, A.G.: Robust block second order sliding mode control for a quadrotor[J]. J. Frankl. Inst. 349(2), 719–739 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, F., Lu, F., Jiang, B., et al.: Adaptive compensation control of the quadrotor helicopter using quantum information technology and disturbance observer[J]. J. Frankl. Inst. 351(1), 442–455 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Song, B., Huang, P. et al. Trajectory Tracking Control for Quadrotor Robot Subject to Payload Variation and Wind Gust Disturbance. J Intell Robot Syst 83, 315–333 (2016). https://doi.org/10.1007/s10846-016-0333-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-016-0333-4

Keywords

Navigation