Skip to main content

Response Strategy to Environmental Cues for Modular Robots with Self-Assembly from Swarm to Articulated Robots


This paper proposes a strategy for a group of swarm robots to self-assemble into a single articulated(legged) structure in response to terrain difficulties during autonomous exploration. These articulated structures will have several articulated legs or backbones, so they are well suited to walk on difficult terrains like animals. There are three tasks in this strategy: exploration, self-assembly and locomotion. We propose a formation self-assembly method to improve self-assembly efficiency. At the beginning, a swarm of robots explore the environment using their sensors and decide whether to self-assemble and select a target configuration from a library to form some robotic structures to finish a task. Then, the swarm of robots will execute a self-assembling task to construct the corresponding configuration of an articulated robot. For the locomotion, with joint actuation from the connected robots, the articulated robot generates locomotive motions. Based on Sambot that are designed to unite swarm mobile and self-reconfigurable robots, we demonstrate the feasibility for a varying number of swarm robots to self-assemble into snake-like and multi-legged robotic structures. Then, the effectiveness and scalability of the strategy are discussed with two groups of experiments and it proves the formation self-assembly is more efficient in the end.

This is a preview of subscription content, access via your institution.


  1. 1.

    Anderson, C., Theraulaz, G., Deneubourg, J.: Self-assemblages in insect societies. Insectes Sociaux 49(2), 99–110 (2002)

    Article  Google Scholar 

  2. 2.

    Bayindir, L., Sahin, E.: A review of studies in swarm robotics. Turk. J. Electr. Eng. Co. 15(2), 115–147 (2007)

    Google Scholar 

  3. 3.

    Bonardi, S., Vespignani, M., Moeckel, R., Van den Kieboom, J., Pouya, S., Sproewitz, A., Ijspeert, A.: Automatic generation of reduced cpg control networks for locomotion of arbitrary modular robot structures. Proc. Robot. Sci. Syst. (2014)

  4. 4.

    Sahin, E.: Swarm robotics: from sources of inspiration to domains of application. In: Sahin, E., Spears, W. (eds.) Swarm robotics, lecture notes in computer science, vol. 3342, pp 10–20. Springer, Berlin (2005)

    Google Scholar 

  5. 5.

    Dorigo, M., Floreano, D., Gambardella, L., Mondada, F., Nolfi, S., Baaboura, T., Birattari, M., Bonani, M., Brambilla, M., Brutschy, A., et al.: Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IEEE Robot. Autom. Mag. 20(4), 60–71 (2013)

    Article  Google Scholar 

  6. 6.

    Groß, R., Bonani, M., Mondada, F., Dorigo, M.: Autonomous self-assembly in swarm-bots. IEEE Trans. Robot. 22(6), 1115–1130 (2006)

    Article  Google Scholar 

  7. 7.

    Groß, R., Dorigo, M.: Self-assembly at the macroscopic scale. Proc. IEEE 96(9), 1490–1508 (2008)

    Article  Google Scholar 

  8. 8.

    Ijspeert, A., Crespi, A., Ryczko, D., Cabelguen, J.: From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817), 1416–1420 (2007)

    Article  Google Scholar 

  9. 9.

    Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21(4), 642–653 (2008)

    Article  Google Scholar 

  10. 10.

    Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S., Tomita, K., Kokaji, S.: Automatic locomotion design and experiments for a modular robotic system. IEEE/ASME Trans. Mechatronics 10 (3), 314–325 (2005)

    Article  Google Scholar 

  11. 11.

    Kernbach, S., Girault, B., Kernbach, O.: On self-optimized self-assembling of heterogeneous multi-robot organisms. In: Meng, Y., Jin, Y. (eds.) Bio-inspired self-organizing robotic systems, studies in computational intelligence, vol. 355, pp 123–141. Springer, Berlin (2011)

    Chapter  Google Scholar 

  12. 12.

    Kernbach, S., Meister, E., Schlachter, F., Jebens, K., Szymanski, M., Liedke, J., Laneri, D., Winkler, L., Schmickl, T., Thenius, R., et al.: Symbiotic robot organisms: replicator and symbrion projects. In: Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems, pp 62–69. ACM (2008)

  13. 13.

    Kernbach, S., Meister, E., Scholz, O., Humza, R., Liedke, J., Ricotti, L., Jemai, J., Havlik, J., Liu, W.: Evolutionary robotics: the next-generation-platform for on-line and on-board artificial evolution. In: IEEE Congress on Evolutionary computation, 2009. CEC’09, pp 1079–1086. IEEE (2009)

  14. 14.

    Liu, W., Winfield, A.: Autonomous morphogenesis in self-assembling robots using ir-based sensing and local communications. In: Dorigo, M., Birattari, M., Caro, G., Doursat, R., Engelbrecht, A.P., Floreano, D., Gambardella, L.M., Groß, R., Sahin, E., Sayama, H., Stützle, T. (eds.) Swarm intelligence, lecture notes in computer science, vol. 6234, pp 107–118. Springer, Berlin (2010)

    Google Scholar 

  15. 15.

    Matsuoka, K.: Mechanisms of frequency and pattern control in the neural rhythm generators. Biol. Cybern. 56(5-6), 345–353 (1987)

    Article  Google Scholar 

  16. 16.

    Meng, Y., Zhang, Y., Jin, Y.: Autonomous self-reconfiguration of modular robots by evolving a hierarchical mechanochemical model. IEEE Comput. Intell. Mag. 6(1), 43–54 (2011)

    Article  Google Scholar 

  17. 17.

    Petersen, K., Nagpal, R., Werfel, J.: Termes: an autonomous robotic system for three-dimensional collective construction. Proc. Robot. Sci. Syst. VII (2011)

  18. 18.

    O’Grady, R., Groß, R., Christensen, A. L, Dorigo, M.: Self-assembly strategies in a group of autonomous mobile robots. Auton. Robot. 28(4), 439–455 (2010)

    Article  Google Scholar 

  19. 19.

    Doursat, R., Sayama H., Michel, O.: Morphogenetic engineering: reconciling self-organization and architecture. In: Doursat, R., Sayama, H., Michel, O. (eds.) Morphogenetic engineering: toward programmalbe complex systems, understanding complex systems, chap. 1. Springer (2012)

  20. 20.

    Russo, S., Harada, K., Ranzani, T., Manfredi, L., Stefanini, C., Menciassi, A., Dario, P.: Design of a robotic module for autonomous exploration and multimode locomotion. IEEE/ASME Transactions on Mechatronics 18(6), 1757–1766 (2013)

    Article  Google Scholar 

  21. 21.

    Schmickl, T.: How to engineer robotic organisms and swarms? In: Meng, Y., Jin, Y. (eds.) Bio-Inspired Self-Organizing Robotic Systems, Studies in Computational Intelligence pp 25–52. Springer, Berlin (2011)

    Chapter  Google Scholar 

  22. 22.

    Soysal, O., Bahceci, E., Sahin, E.: Aggregation in swarm robotic systems: evolution and probabilistic control. Turk. J. Elec. Engin. Co. 15(2) (2007)

  23. 23.

    Sproewitz, A., Moeckel, R., Maye, J., Ijspeert, A.: Learning to move in modular robots using central pattern generators and online optimization. Int. J. Robot. Res. 27(3–4), 423–443 (2008)

    Article  Google Scholar 

  24. 24.

    Sprowitz, A., Pouya, S., Bonardi, S., van den Kieboom, J., Möckel, R., Billard, A., Dillenbourg, P., Ijspeert, A.J.: Roombots: reconfigurable robots for adaptive furniture. IEEE Comput. Intell. Mag. 5(3), 20–32 (2010)

    Article  Google Scholar 

  25. 25.

    Wang, T., Li, H., Meng, C.: Self-assembling for swarm modular robots using mimo fuzzy control. Adv. Mech. Eng. 2013, ID: 598647 (2013)

    Google Scholar 

  26. 26.

    Wei, H., Chen, Y., Liu, M., Cai, Y., Wang, T.: Swarm robots: from self-assembly to locomotion. Comput. J. 54(9), 1465–1474 (2011)

    Article  Google Scholar 

  27. 27.

    Wei, H., Chen, Y., Tan, J., Wang, T.: Sambot: a self-assembly modular robot system. IEEE/ASME Trans. Mechatronics 16(4), 745–757 (2011)

    Article  Google Scholar 

  28. 28.

    Wei, H., Li, H., Chen, Y., Tan, J.: A general framework integrating exploration, self-assembly and locomotion control for swarm robots. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), pp 871–876. IEEE (2011)

  29. 29.

    Wei, H., Li, H., Tan, J., Wang, T.: Self-assembly control and experiments in swarm modular robots. Sci. China Technol. Sci. 55(4), 1118–1131 (2012)

    Article  Google Scholar 

  30. 30.

    Wei, H., Wang, T., Liu, M., Xiao, J.: Inverse dynamic modeling and analysis of a new caterpillar robotic mechanism by kanes method. Robotica 31(03), 493–501 (2013)

    Article  Google Scholar 

  31. 31.

    Whitesides, G., Grzybowski, B.: Self-assembly at all scales. Science 295(5564), 2418–2421 (2002)

    Article  Google Scholar 

  32. 32.

    Wolfe, K., Moses, M., Kutzer, M., Chirikjian, G.: M3 express: a low-cost independently-mobile reconfigurable modular robot. In: 2012 IEEE International Conference on robotics and automation (ICRA), pp 2704–2710. IEEE (2012)

  33. 33.

    Yu, C., Nagpal, R.: A self-adaptive framework for modular robots in a dynamic environment: theory and applications. Int. J. Robot Res. 30(8), 1015–1036 (2011)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Haiyuan Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, H., Wang, T., Wei, H. et al. Response Strategy to Environmental Cues for Modular Robots with Self-Assembly from Swarm to Articulated Robots. J Intell Robot Syst 81, 359–376 (2016).

Download citation


  • Swarm robots
  • Self-assembly
  • Autonomous exploration
  • Central pattern generation (CPG)