Foot Force Based Reactive Stability of Multi-Legged Robots to External Perturbations

Abstract

Many environments and scenarios contain rough and irregular terrain and are inaccessible or hazardous for humans. Robotic automation is preferred in lieu of placing humans at risk. Legged locomotion is more advantageous in traversing complex terrain but requires constant monitoring and correction to maintain system stability. This paper presents a multi-legged reactive stability control method for maintaining system stability under external perturbations. Assuming tumbling instability and sufficient friction to prevent slippage, the reactive stability control method is based solely on the measured foot forces normal to the contact surface, reducing computation time and sensor information. Under external perturbations, the reactive stability control method opts to either displace the CG or the foot contacts of the robot based on the measured foot force distribution. Details describing the reactive stability control method are discussed including algorithms and an implementation example. An experimental demonstration of the reactive stability control method is presented. The experiment was conducted on a hexapod robot platform retrofitted with a tiny computer and force sensitive resistors to measure the foot forces. The experimental results show that the presented reactive stability control strategy prevents the robot from tipping over under external perturbation.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Arevalo, J.C., Sanz-Merodio, D., Garcia, E.: Reactive humanoid walking algorithm for occluded terrain. In: Proc. of the First Iberian Robotics Conf., pp. 397–410 (2014)

  2. 2.

    Barasuol, V., Buchli, J., Semini, C., Frigerio, M., De Pieri, E.R., Caldwell, D.G.: A reactive controller framework for quadrupedal locomotion on challenging terrain. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, pp. 2554–2561 (2013)

  3. 3.

    Kim, J.Y.: Dynamic balance control algorithm of a six-legged walking robot, little crabster. J. Intell. Rob. Syst., 1–18 (2014)

  4. 4.

    Arkin, R.C.: Behavior-based robotics. MIT press (1998)

  5. 5.

    Solomon, J.H., Locascio, M.A., Hartmann, M.J.: Linear reactive control for efficient 2D and 3D bipedal walking over rough terrain. Adapt. Behav. 21(1), 29–46 (2013)

    Article  Google Scholar 

  6. 6.

    Playter, R., Buehler, M., Raibert, M.: Bigdog. In: Proc. of the SPIE 6230 Unmanned Systems Technology VIII, 62302O (2006)

  7. 7.

    Raibert, M., Blankespoor, K., Nelson, G., Playter, R., et al.: Bigdog, the rough-terrain quadruped robot. In: Proc. of the 17th World Congress, pp. 10,823–10,825 (2008)

  8. 8.

    Rebula, J.R., Neuhaus, P.D., Bonnlander, B.V., Johnson, M.J., Pratt, J.E.: A controller for the littledog quadruped walking on rough terrain. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, pp. 1467–1473 (2007)

  9. 9.

    Gay, S., Santos-Victor, J., Ijspeert, A.: Learning robot gait stability using neural networks as sensory feedback function for central pattern generators. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 194–201 (2013)

  10. 10.

    Zhang, H., Liu, Y., Zhao, J., Chen, J., Yan, J.: Development of a bionic hexapod robot for walking on unstructured terrain. J. Bionic Eng. 11(2), 176–187 (2014)

    Article  Google Scholar 

  11. 11.

    Roy, S.S., Pratihar, D.K.: Dynamic modeling, stability and energy consumption analysis of a realistic six-legged walking robot. Rob. Comput. Integr. Manuf. 29(2), 400–416 (2013)

    Article  Google Scholar 

  12. 12.

    Roy, S.S., Pratihar, D.K.: Kinematics, dynamics and power consumption analyses for turning motion of a six-legged robot. J. Intell. Rob. Syst. 74(3-4), 663–688 (2014)

    Article  Google Scholar 

  13. 13.

    Li, M., Zhang, X., Zhang, J., Zhang, M.: Free gait generation based on discretization for a hexapod robot. In: Proc. of the IEEE Int. Conf. on Robotics and Biomimetics, pp. 2334–2338 (2013)

  14. 14.

    McGhee, R., Frank, A.: On the stability properties of quadruped creeping gaits. Math. Biosci. 3, 331–351 (1968)

    Article  MATH  Google Scholar 

  15. 15.

    Sreenivasan, S.V., Wilcox, B.H.: Stability and traction control of an actively actuated micro-rover. J. Rob. Syst. 11(6), 487–502 (1994)

    Article  Google Scholar 

  16. 16.

    Papadopoulos, E., Rey, D.: A new measure of tipover stability margin for mobile manipulators. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, vol. 4, pp. 3111 –3116 (1996)

  17. 17.

    Ghasempoor, A., Sepehri, N.: A measure of machine stability for moving base manipulators. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, vol. 3, pp. 2249 –2254 (1995)

  18. 18.

    Hirose, S., Tsukagoshi, H., Yoneda, K.: Normalized energy stability margin: Generalized stability criterion for walking vehicles. In: Proc. of Int. Conf. on Climbing and Walking Robots, pp. 71–76 (1998)

  19. 19.

    Garcia, E, de Santos, P.A.G.: A new dynamic energy stability margin for walking machines. In: Proc. of Int. Conf. on Advanced Robotics, pp. 1014–1019 (2003)

  20. 20.

    Kang, D.O., Lee, Y.J., Lee, S.H., Hong, Y.S., Bien, Z.: A study on an adaptive gait for a quadruped walking robot under external forces. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, vol. 4, pp. 2777–2782 (1997)

  21. 21.

    Kim, J., Chung, W.K., Youm, Y., Lee, B.: Real-time ZMP compensation method using null motion for mobile manipulators. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, vol. 2, pp. 1967–1972 (2002)

  22. 22.

    Yoneda, K., Hirose, S.: Tumble stability criterion of integrated locomotion and manipulation. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, vol. 2, pp. 870 –876 (1996)

  23. 23.

    Agheli, M., Nestinger, S.S.: Study of the foot force stability margin for multi-legged/wheeled robots under dynamic situations. In: Proc. of the IEEE/ASME Int. Conf. on Mechatronics and Embedded Systems and Applications, pp. 99–104 (2012)

  24. 24.

    Agheli, M., Nestinger, S.S.: Foot force criterion for robot stability. In: Proc. of the Int. Conf. on Climbing and Walking Robots and the Support Technologies for Mobile Machines, pp. 417–424 (2012)

  25. 25.

    Lynxmotion: http://www.lynxmotion.com

  26. 26.

    Gumstix, Inc.: http://www.gumstix.com

  27. 27.

    Lewinger, W.A., Branicky, M.S., Quinn, R.D.: Insect-inspired, actively compliant hexapod capable of object manipulation. In: Proc. of Int. Conf. on Climbing and Walking Robots, pp. 65–72 (2006)

  28. 28.

    Figliolini, G., Stan, S., Rea, P.: Motion analysis of the leg tip of a six-legged walking robot. In: Proc. of the IFToMM World Congress, Besanċon, France (2007)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mahdi Agheli.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Agheli, M., Nestinger, S.S. Foot Force Based Reactive Stability of Multi-Legged Robots to External Perturbations. J Intell Robot Syst 81, 287–300 (2016). https://doi.org/10.1007/s10846-015-0233-z

Download citation

Keywords

  • Reactive stability
  • FFSM
  • Normal foot force
  • Multi-legged robot