Journal of Intelligent & Robotic Systems

, Volume 81, Issue 1, pp 145–163 | Cite as

A Web-based Tool to Analyze the Kinematics and Singularities of Parallel Robots

  • Adrián Peidró
  • Arturo Gil
  • José María Marín
  • Óscar Reinoso
Article

Abstract

This paper presents PAROLA, a new web-based educational tool whose aim is to experiment with the kinematics and singularities of parallel robots. The tool is designed to help students simulate the inverse and forward kinematic problems of three parallel robots in an intuitive and graphical way. The problems of singularities and path planning can also be studied with the tool. PAROLA is the first tool to present the motion of the parallel robots simultaneously in the Cartesian and joint spaces to better explain the singularity and path planning problems, allowing students to freely modify the geometry of the robots to analyze the variation of singularities in both spaces. Furthermore, the tool includes a real parallel robot that the students can control over the Internet to conduct remote experiments. The paper describes some examples that show the utility of the proposed tool in learning parallel robotics.

Keywords

Parallel robots Simulation Education Virtual and remote laboratories Singularities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Campos, L., Bourbonnais, F., Bonev, I.A., Bigras, P.: Development of a five-bar parallel robot with large workspace. In: Proceedings of the ASME 2010 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (2010)Google Scholar
  2. 2.
    Candelas, F.A., Puente, S.R., Torres, F., Ortiz, F., Gil, P., Pomares, J.: A virtual laboratory for teaching robotics. Int. J. Eng. Educ. 19(3), 363–370 (2003)Google Scholar
  3. 3.
    Corke, P.: A robotics toolbox for MATLAB. IEEE Robot. Autom. Mag. 3(1), 24–32 (1996)CrossRefGoogle Scholar
  4. 4.
    Falconi, R., Melchiorri, C.: RobotiCad: an Educational Tool for Robotics. In: Proceedings of the 17th IFAC World Congress, vol. 16 (2008)Google Scholar
  5. 5.
    Gerkey, B., Vaughan, R., Howard, A.: The Player/Stage Project: Tools for Multi-Robot and Distributed Sensor Systems. In: International Conference on Advanced Robotics (2003)Google Scholar
  6. 6.
    Gosselin, C., Angeles, J.: Singularity Analysis of Closed-Loop Kinematic Chains. IEEE Trans. Robot. Autom. 6(3), 281–290 (1990)CrossRefGoogle Scholar
  7. 7.
    Guzmán, J., Berenguel, M., Rodríguez, F., Dormido, S.: An interactive tool for mobile robot motion planning. Robot. Auton. Syst. 56(5), 396–409 (2008)CrossRefGoogle Scholar
  8. 8.
    Hesselbach, J., Helm, M.B., Soetebier, S.: Connecting Assembly Modes for Workspace Enlargement. In: Advances in Robot Kinematics, pp. 347–356. Springer Netherlands (2002)Google Scholar
  9. 9.
    Honey, W.E., Jamshidi, M.: ROBO_SIM: A robotics simulation environment on personal computers. Robot. Auton. Syst. 9(4), 305–317 (1992)CrossRefGoogle Scholar
  10. 10.
    Hunt, K.H.: Structural kinematics of in-parallel-actuated robot arms. ASME Journal of Mechanisms. Trans. Autom. Des. 105(4), 705–712 (1983)CrossRefGoogle Scholar
  11. 11.
    Jara, C.A., Candelas, F.A., Gil, P., Torres, F., Esquembre, F., Dormido, S.: EJS+EjsRL: An interactive tool for industrial robots simulation, computer vision and remote operation. Robot. Auton. Syst. 59(6), 389–401 (2011). doi:10.1016/j.robot.2011.02.002 CrossRefGoogle Scholar
  12. 12.
    Koenig, N., Howard, A.: Design and use paradigms for Gazebo, an open-source multi-robot simulator. In: Intelligent Robots and Systems. Proceedings of 2004 IEEE/RSJ International Conference on, vol. 3, pp. 2149–2154 (2004)Google Scholar
  13. 13.
    Lajpah, L.: Simulation in robotics. Math. Comput. Simul. 79(4), 879–897 (2008)CrossRefGoogle Scholar
  14. 14.
    Liu, X.J., Wang, J., Pristchow, G.: Kinematics, singularity and workspace of planar 5R symmetrical parallel mechanisms. Mech. Mach. Theory 41(2), 145–169 (2006)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Liu, X.J., Wang, J., Zheng, H.: Workspace atlases for the computer aided design of the Delta robot. Proc. IMECHE Part C: J. Mech. Engrg. Sci. 217(8), 861–869 (2003)CrossRefGoogle Scholar
  16. 16.
    Martínez, F.J., González, R., Rodríguez, F., Guzmán, J.L.: Laboratorio Virtual y Remoto para la Enseñanza de Robótica Paralela. In: VI Jornadas CEA de Enseñanza a Través de Internet-Web de la Ingeniería de Sistemas y Automática (2010)Google Scholar
  17. 17.
    Merlet, J.P.: Parallel Robots. Springer (2006)Google Scholar
  18. 18.
    Michel, O.: Webots: a powerful realistic mobile robots simulator. In: Proceeding of the Second International Workshop on RoboCup (1998)Google Scholar
  19. 19.
    Parasuraman, S., Liang, P.: Development of RPS parallel manipulators. In: Computer and Network Technology (ICCNT), 2010 Second International Conference on, pp. 600–605 (2010)Google Scholar
  20. 20.
    Paya, L., Reinoso, O., Torres, F., Puente, S.T.: A Web-based Platform for Remote Interaction with Mobile Robots in Higher Education. Int. J. Eng. Educ. 27(2), 266–283 (2011)Google Scholar
  21. 21.
    Thomas, F., Wenger, P.: On the Topological Characterization of Robot Singularity Loci. A Catastrophe-Theoretic Approach. In: Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), pp. 3940–3945 (2011)Google Scholar
  22. 22.
    Tsai, L.W.: Robot Analysis. The Mechanics of Serial and Parallel Manipulators. Wiley (1999)Google Scholar
  23. 23.
    Wenger, P., Chablat, D.: Workspace and Assembly modes in Fully-Parallel Manipulators: A Descriptive Study. In: Advances in Robot Kinematics and Computational Geometry, pp. 117–126 (1998)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Adrián Peidró
    • 1
  • Arturo Gil
    • 1
  • José María Marín
    • 1
  • Óscar Reinoso
    • 1
  1. 1.Systems Engineering and Automation DepartmentMiguel Hernandez UniversityElcheSpain

Personalised recommendations