Vision-aided Estimation of Attitude, Velocity, and Inertial Measurement Bias for UAV Stabilization

Abstract

This paper studies vision-aided inertial navigation of small-scale unmanned aerial vehicles (UAVs) in GPS-denied environments. The objectives of the navigation system are to firstly online estimate and compensate the unknown inertial measurement biases, secondly provide drift-free velocity and attitude estimates which are crucial for UAV stabilization control, and thirdly give relatively accurate position estimation such that the UAV is able to perform at least a short-term navigation when the GPS signal is not available. For the vision system, we do not presume maps or landmarks of the environment. The vision system should be able to work robustly even given low-resolution images (e.g., 160 ×120 pixels) of near homogeneous visual features. To achieve these objectives, we propose a novel homography-based vision-aided navigation system that adopts four common sensors: a low-cost inertial measurement unit, a downward-looking monocular camera, a barometer, and a compass. The measurements of the sensors are fused by an extended Kalman filter. Based on both analytical and numerical observability analyses of the navigation system, we theoretically verify that the proposed navigation system is able to achieve the navigation objectives. We also show comprehensive simulation and real flight experimental results to verify the effectiveness and robustness of the proposed navigation system.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Cai, G., Chen, B.M., Lee, T.H.: Unmanned Rotorcraft Systems. Springer, New York (2011)

    Google Scholar 

  2. 2.

    Phang, S.K., Li, K., Yu, K.H., Chen, B.M., Lee, T.H.: Systematic design and implementation of a micro unmanned quadrotor system. Unmanned Syst. 2(2), 121–141 (2014)

    Article  Google Scholar 

  3. 3.

    Kim, J., Sukkarieh, S.: Autonomous airborne navigation in unknown terrain environments. IEEE Trans. Aerosp. Electron. Syst. 40, 1031–1045 (2004)

    Article  Google Scholar 

  4. 4.

    Wu, A.D., Johnson, E.N., Proctor, A.A.: Vision-aided inertial navigation for flight control. AIAA J. Aerosp. Comput. Inf. Commun. 2(9), 348–360 (2005)

    Article  Google Scholar 

  5. 5.

    Kim, J., Sukkarieh, S.: Real-time implementation of airborne inertial-SLAM. Robot. Auton. Syst. 55, 62–71 (2007)

    Article  Google Scholar 

  6. 6.

    Bryson, M., Sukkarieh, S.: Observability analysis and active control for airborne SLAM. IEEE Trans. Aerosp. Electron. Syst. 1, 261–280 (2008)

    Article  Google Scholar 

  7. 7.

    Taylor, C.N., Veth, M.J., Raquet, J.F., Miller, M.M.: Comparison of two image and inertial sensor fusion techniques for navigation in unmapped environments. IEEE Trans. Aerosp. Electron. Syst. 47(2), 946–958 (2011)

    Article  Google Scholar 

  8. 8.

    Zhang, J., Liu, W., Wu, Y.: Novel technique for vision-based UAV navigation. IEEE Trans. Aerosp. Electron. Syst. 47(4), 2731–2741 (2011)

    Article  Google Scholar 

  9. 9.

    Scaramuzza, D., Fraundorfer, F.: Visual odometry: Part I - the first 30 years and fundamentals. IEEE Robot. Autom. Mag. 18(4), 80–92 (2011)

    Article  Google Scholar 

  10. 10.

    Peng, K., Zhao, S., Lin, F., Chen, B.M.: Vision based target tracking/following and estimation of target motion. In: Proceedings of the 2013 AIAA Guidance, Navigation and Control Conference, Boston, USA (2013)

  11. 11.

    Lin, F., Ang, K.Z.Y., Wang, F., Chen, B.M., Lee, T.H., Yang, B., Dong, M., Dong, X., Cui, J., Phang, S.K., Wang, B., Luo, D., Peng, K., Cai, G., Zhao, S., Yin, M., Li, K.: Development of an unmanned coaxial rotorcraft for the darpa uavforge challenge. Unmanned Syst. 1(2), 247–258 (2013)

    Article  Google Scholar 

  12. 12.

    Wang, F., Liu, P., Zhao, S., Chen, B.M., Phang, S.K., Lai, S., Pang, T., Wang, B., Cai, C., Lee, T.H.: Development of an unmanned helicopter for verticle replenishment. Unmanned Syst. 3(1), 63–87 (2015)

  13. 13.

    Bonin-Font, F., Ortiz, A., Oliver, G.: Visual navigation for mobile robots: A survey. J. Intell. Robot. Syst. 53, 263–296 (2008)

    Article  Google Scholar 

  14. 14.

    Conte, G., Doherty, P.: Vision-based unmanned aerial vehicle navigation using geo-referenced information. EURASIP J. Adv. Signal Process. 1–18 (2009)

  15. 15.

    Caballero, F., Merino, L., Ferruz, J., Ollero, A.: Vision-based odometry and SLAM for medium and high altitude flying UAVs. J. Intell. Robot. Syst. 54, 137–161 (2009)

    Article  Google Scholar 

  16. 16.

    Kaiser, M.K., Gans, N.R., Dixon, W.E.: Vision-based estimation for guidance, navigation, and control of an aerial vehicle. IEEE Trans. Aerosp. Electron. Syst. 46(3), 137–161 (2010)

    Article  Google Scholar 

  17. 17.

    Mourikis, A.I., Trawny, N., Roumeliotis, S.I., Johnson, A.E., Ansar, A., Matthies, L.: Vision-aided inertial navigation for spacecraft entry, descent, and landing. IEEE Trans. Robot. 25(2), 264–280 (2009)

    Article  Google Scholar 

  18. 18.

    Howard, A.M., Jones, B.M., Serrano, N.: Integrated sensing for entry, descent, and landing of a robotic spacecraft. IEEE Trans. Aerosp. Electron. Syst. 47(1), 295–304 (2011)

    Article  Google Scholar 

  19. 19.

    Wang, F., Cui, J., Phang, S.K., Chen, B.M., Lee, T.H.: A mono-camera and scanning laser range finder based UAV indoor navigation system. In: Proceedings of the 2013 International Conference on Unmanned Aircraft Systems, pp. 693–700. Atlanta, USA (2013)

  20. 20.

    Ma, Y., Soatto, S., Kosecka, J., Sastry, S.: An Invitation to 3D Vision. Springer, New York (2004)

    Google Scholar 

  21. 21.

    Di, L., Fromm, T., Chen, Y.: A data fusion system for attitude estimation of low-cost miniature UAVs. J. Intell. Robot. Syst. (2011)

  22. 22.

    Shabayek, A.E.R., Demonceaux, C., Morel, O., Fofi, D.: Vision based UAV attitude estimation: Progress and insights. J. Intell. Robot. Syst. 65(1–4), 295–308 (2012)

    Article  Google Scholar 

  23. 23.

    Martinelli, A: Vision and IMU data fusion: Closed-form solutions for attitude, speed, absolute scale, and bias determination. IEEE Trans. Robot. 28(1), 44–60 (2012)

    Article  MathSciNet  Google Scholar 

  24. 24.

    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, ISBN: 0521540518 (2004)

  25. 25.

    Groves, P.D.: Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems. Artech House (2008)

  26. 26.

    Nardone, S.C., Aidala, V.J.: Observability criteria for bearings-only target motion analysis. IEEE Trans. Aerosp. Electron. Syst. 17(2), 162–166 (1981)

    Article  MathSciNet  Google Scholar 

  27. 27.

    Nardone, S.C., Lindgren, A.G., Gong, K.F.: Fundamental properties and performance of conventional bearings-only target motion analysis. IEEE Trans. Autom. Control 29(9), 775–787 (1984)

    Article  Google Scholar 

  28. 28.

    Zhao, S., Chen, B.M., Lee, T.H.: Optimal placement of bearing-only sensors for target localization. In: Proceedings of the 2012 American Control Conference, pp. 5108–5113. Montreal, Canada (2012)

  29. 29.

    Zhao, S., Chen, B.M., Lee, T.H.: Optimal sensor placement for target localization and tracking in 2D and 3D. Int. J. Control. 86(10), 1687–1704 (2013)

    Article  MathSciNet  Google Scholar 

  30. 30.

    Michaelsen, E., Kirchhof, M., Stilla, U.: Sensor pose inference from airborne videos by decomposing homography estimates. In: Proceedings of the 2011 Asian Control Conference, pp. 211–216. Kaohsiung, Taiwan (2011)

  31. 31.

    Dong, X., Chen, B.M., Cai, G., Lin, H., Lee, T.H.: Development of a comprehensive software system for implementing cooperative control of multiple unmanned aerial vehicles. Int. J. Robot. Autom. 26(1), 49–63 (2011)

    Google Scholar 

  32. 32.

    Liu, P., Dong, X., Chen, B.M., Lee, T.H.: Development of an enhanced ground control system for unmanned aerial vehicles. In: Proceedings of the IASTED International Conference on Engineering and Applied Science, pp. 136–143. Colombo, Sri Lanka (2012)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shiyu Zhao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Lin, F., Peng, K. et al. Vision-aided Estimation of Attitude, Velocity, and Inertial Measurement Bias for UAV Stabilization. J Intell Robot Syst 81, 531–549 (2016). https://doi.org/10.1007/s10846-015-0206-2

Download citation

Keywords

  • Unmanned aerial vehicle
  • Vision-based navigation
  • Homography
  • Attitude estimation
  • Observability analysis