Skip to main content
Log in

Neural Network Control of a Rehabilitation Robot by State and Output Feedback

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, neural network control is presented for a rehabilitation robot with unknown system dynamics. To deal with the system uncertainties and improve the system robustness, adaptive neural networks are used to approximate the unknown model of the robot and adapt interactions between the robot and the patient. Both full state feedback control and output feedback control are considered in this paper. With the proposed control, uniform ultimate boundedness of the closed loop system is achieved in the context of Lyapunov’s stability theory and its associated techniques. The state of the system is proven to converge to a small neighborhood of zero by appropriately choosing design parameters. Extensive simulations for a rehabilitation robot with constraints are carried out to illustrate the effectiveness of the proposed control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wolfe, C.: The impact of stroke. Br. Med. Bull. 56(2), 275–286 (2000)

    Article  MathSciNet  Google Scholar 

  2. Hogan, N., Krebs, H., Rohrer, B., Palazzolo, J., Dipietro, L., Fasoli, S., Stein, J., Hughes, R., Frontera, W., Lynch, D., et al.: Motions or muscles? some behavioral factors underlying robotic assistance of motor recovery. J. Rehabil. Res. Dev. 43(5), 605 (2006)

    Article  Google Scholar 

  3. Riener, R., Lünenburger, L., Colombo, G.: Human-centered robotics applied to gait training and assessment. J. Rehabil. Res. Dev. 43(5), 679–694 (2006)

    Article  Google Scholar 

  4. Koh, C., Hoffmann, T., Bennett, S., McKenna, K.: Management of patients with cognitive impairment after stroke: A survey of australian occupational therapists. Aust. Occup. Ther. J. 56(5), 324–331 (2009)

    Article  Google Scholar 

  5. He, W., Ge, S.S., Li, Y., Chew, E., Ng, Y.S.: Impedance control of a rehabilitation robot for interactive training, In Proceedings of the 2012 International Conference on Social Robotics, Chengdu, China, pp. 526–535 (2012)

  6. Yang, C., Ganesh, G., Haddadin, S., Parusel, S. , Albu-Schaeffer, A., Burdet, E.: Human-like adaptation of force and impedance in stable and unstable interactions. IEEE Trans. Robot. 27(5), 918–930 (2011)

    Article  Google Scholar 

  7. Li, Z., Ge, S.S., Ming, A.: Adaptive robust motion/force control of holonomic-constrained nonholonomic mobile manipulators. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 37(3), 607–616 (2007)

    Article  Google Scholar 

  8. Li, Z., Li, J., Kang, Y.: Adaptive robust coordinated control of multiple mobile manipulators interacting with rigid environments. Automatica 46(12), 2028–2034 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Li, Y., Ge, S.S., Yang, C.: Learning impedance control for physical robot–environment interaction. Int. J. Control 85(2), 182–193 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hogan, N.: Impedance control: An approach to manipulation: Part iii applications. J. Dyn. Syst. Meas., control 107(2), 1–24 (1985)

    Article  MATH  Google Scholar 

  11. Huang, L., Ge, S.S., Lee, T.H.: Position/force control of uncertain constrained flexible joint robots. Mechatronics 16(2), 111–120 (2006)

    Article  Google Scholar 

  12. Li, Z., Ge, S.S., Adams, M., Wijesoma, W.: Robust adaptive control of uncertain force/motion constrained nonholonomic mobile manipulators. Automatica 44(3), 776–784 (2008)

    Article  MathSciNet  Google Scholar 

  13. Narendra, K.S., Parthasarathy, K.: Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Netw. 1(1), 4–27 (1990)

    Article  Google Scholar 

  14. Levin, A.U., Narendra, K.S.: Control of nonlinear dynamical systems using neural networks. ii. observability, identification, and control. IEEE Trans. Neural Netw. 7(1), 30–42 (1996)

    Article  Google Scholar 

  15. Ge, S.S., Lee, T.H., Harris, C.J.: Adaptive Neural Network Control of Robotic Manipulators. London, UK: World Scientific (1998)

  16. Lewis, F.L., Jagannathan, S., Yeildirek, A.: Neural network control of robot manipulators and nonlinear systems. Taylor & Francis, London (1999)

    Google Scholar 

  17. Wang, C., Hill, D.J.: Deterministic learning theory for identification, recognition, and control. CRC Press (2009)

  18. Li, Y., Yang, C., Ge, S.S., Lee, T.H.: Adaptive output feedback nn control of a class of discrete-time MIMO nonlinear systems with unknown control directions. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 41(2), 507–517 (2011)

    Article  Google Scholar 

  19. Ren, B., Ge, S.S., Su, C.-Y., Lee, T.H.: Adaptive neural control for a class of uncertain nonlinear systems in pure-feedback form with hysteresis input. IEEE Trans. Syst., Man, Cybern., Part B: Cybern. 39(2), 431–443 (2009)

    Article  Google Scholar 

  20. Chen, M., Ge, S.S., Ren, B.: Adaptive tracking control of uncertain mimo nonlinear systems with input constraints. Automatica 47(3), 452–465 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Liu, Y.-J., Chen, C.P., Wen, G.-X., Tong, S.: Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems. IEEE Trans. Neural Netw. 22(7), 1162–1167 (2011)

    Article  Google Scholar 

  22. Liu, Y.-J., Tong, S.-C., Wang, D., Li, T.-S., Chen, C.: Adaptive neural output feedback controller design with reduced-order observer for a class of uncertain nonlinear siso systems. IEEE Trans. Neural Netw. 22(8), 1328–1334 (2011)

    Article  Google Scholar 

  23. Dai, S.-L., Wang, C., Wang, M.: Dynamic learning from adaptive neural network control of a class of nonaffine nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 111–123 (2014)

    Article  Google Scholar 

  24. Dai, S.-L., Wang, C., Luo, F.: Identification and learning control of ocean surface ship using neural networks. IEEE Trans. Ind. Inform. 8(34), 801–810 (2012)

    Article  Google Scholar 

  25. Li, Z., Su, C.-Y.: Neural-adaptive control of single-master-multiple-slaves teleoperation for coordinated multiple mobile manipulators with time-varying communication delays and input uncertainties. IEEE Trans. Neural Netw. Learn. Syst. 24(9), 1400–1413 (2013)

    Article  Google Scholar 

  26. Sun, F., Sun, Z., Zhu, Y., Lu, W.: Stable neuro-adaptive control for robots with the upper bound estimation on the neural approximation errors. J. Intell. & Robot. Syst. 26(1), 91–100 (1999)

    Article  Google Scholar 

  27. Sun, F., Sun, Z.: Stable sampled-data adaptive control of robot arms using neural networks. J. Intell. & Robot. Syst. 20(2-4), 131–155 (1997)

    Article  Google Scholar 

  28. He, W., Ge, S.S., How, B.V.E., Choo, Y.S.: Dynamics and Control of Mechanical Systems in Offshore Engineering (2014)

  29. Selmic, R., Lewis, F.: Deadzone compensation in motion control systems using neural networks. IEEE Trans. Autom. Control 45(4), 602–613 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Yang, C., Li, Z., Li, J.: Trajectory planning and optimized adaptive control for a class of wheeled inverted pendulum vehicle models. IEEE Trans. Cybern. 43(1), 24–36 (2013)

    Article  Google Scholar 

  31. Cui, R., Ren, B., Ge, S.S.: Synchronised tracking control of multi-agent system with high order dynamics. IET Control Theory & Appl. 6(5), 603–614 (2012)

    Article  MathSciNet  Google Scholar 

  32. Sanner, R.M., Slotine, J.E.: Gaussian networks for direct adaptive control. IEEE Trans. Neural Netw. 3(6), 837–863 (1992)

    Article  Google Scholar 

  33. Ge, S.S., Wang, C.: Adaptive neural network control of uncertain MIMO non-linear systems. IEEE Trans. Neural Netw. 15(3), 674–692 (2004)

    Article  Google Scholar 

  34. Ge, S.S., Hang, C.C., Lee, T.H., Zhang, T.: Stable Adaptive Neural Network Control. Kluwer Academic, Boston, USA (2001)

    Google Scholar 

  35. Behtash, S.: Robust output tracking for nonlinear system. Int. J. Control 51, 1381–1407 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  36. Horn, R., Johnson, C.: Matrix analysis. Cambridge University Press, Cambridge UK (1990)

    MATH  Google Scholar 

  37. He, W., Ge, S.S.: Robust adaptive boundary control of a vibrating string under unknown time-varying disturbance. IEEE Trans. Control Syst. Technol. 20(1), 48–58 (2012)

    Google Scholar 

  38. He, W., Ge, S.S., How, B.V.E., Choo, Y.S., Hong, K.-S.: Robust adaptive boundary control of a flexible marine riser with vessel dynamics. Automatica 47(4), 722–732 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  39. Ioannou, P., Sun, J.: Robust Adaptive Control. Prentice-Hall, Eaglewood Cliffs, New Jersey (1996)

    MATH  Google Scholar 

  40. He, W., Ge, S.S., Zhang, S.: Adaptive boundary control of a flexible marine installation system. Automatica 47(12), 2728–2734 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  41. He, W., Zhang, S., Ge, S.S.: Robust adaptive control of a thruster assisted position mooring system. Automatica 50(7), 1843–1851 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  42. Khalil, H.K., Systems Nonlinear. Prentice Hall, New Jersey USA (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei He.

Additional information

This work was supported by the National Natural Science Foundation of China under Grant 61203057, the Fundamental Research Funds for the China Central Universities of UESTC under Grant ZYGX2013Z003, and the National Basic Research Program of China (973 Program) under Grant 2014CB744206

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Ge, S.S., Li, Y. et al. Neural Network Control of a Rehabilitation Robot by State and Output Feedback. J Intell Robot Syst 80, 15–31 (2015). https://doi.org/10.1007/s10846-014-0150-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-014-0150-6

Keywords

Navigation