Skip to main content

Line Segment Grouping and Linking: A Key Step Toward Automated Photogrammetry for Non-Contact Site Surveying

Abstract

The surveying technique of photogrammetry has been proven to be safe, efficient, and inexpensive to extracting spatial data (i.e. shape, size, position) of infrastructure from collected photos. These data are useful in many infrastructure and construction applications such as quality control and quantity take-off. However, photogrammetry has not been widely used in construction projects because much effort is still needed to convert the image data into a three-dimensional (3D) geometric model in the physical space. More specifically, it demands manually marking object vertices and edges and referencing them across photos. To alleviate this situation, this paper proposes a novel method to group and link line segments in order to automate the object vertices and edges marking process. In the proposed method, small, discontinuous line segments are first detected in an image, and classified into different sets based on the vanishing points they belong to. Within each set, a novel algorithm is created to link the line segments into long line segments. Next, the corner information is derived from the image by a classic corner detector, and utilized to assure the actual locations of endpoints of each obtained long line segment. By removing the remaining ungrouped or unlinked small line segments, the final result is a set of complete and accurate line edges readily to be used in the ensuing step of photogrammetric process. So far, the grouping and classification of line segments have been implemented. The test result from outdoor and indoor images indicates effectiveness and promise of the method in facilitating the automation and broad applications of photogrammetry in construction.

This is a preview of subscription content, access via your institution.

References

  1. Von Gioi, R.G., et al.: Lsd: A fast line segment detector with a false detection control. IEEE Trans. Pattern Anal. Mach. Intell. 32(4), 722–732 (2010)

    Article  Google Scholar 

  2. Quiñones-Rozo, C., Hashash, Y., Liu, L.: Digital image reasoning for tracking excavation activities. Autom. Constr. 17 (5), 608–622 (2008)

    Article  Google Scholar 

  3. Golparvar-Fard, M., Peña-Mora, F., Savarese, S.: Application of D4AR–A 4-dimensional augmented reality model for automating construction progress monitoring data collection, processing and communication. ITcon (2009)

  4. Dai, F., Lu, M.: Assessing the accuracy of applying photogrammetry to take geometric measurements on building products. J. Constr. Eng. Manag.-ASCE 136(2), 242–250 (2010)

    Article  Google Scholar 

  5. Dai, F., Lu, M., Kamat, V.R.: Analytical approach to augmenting site photos with 3D graphics of underground infrastructure in construction engineering applications. J. Comput. Civil Eng. 25(1), 66–74 (2011)

    Article  Google Scholar 

  6. Fathi, H., Brilakis, I.: Recovering the 3D structure of poorly textured infrastructure scenes using point and line features. In: Computing in Civil Engineering, pp. 170–177 (2012)

  7. Klein, L., Li, N., Becerik-Gerber, B.: Imaged-based verification of as-built documentation of operational buildings. Autom. Constr. 21(0), 161–171 (2012)

    Article  Google Scholar 

  8. Brilakis, I.K., Soibelman, L., Shinagawa, Y.: Construction site image retrieval based on material cluster recognition. Adv. Eng. Inf. 20(4), 443–452 (2006)

    Article  Google Scholar 

  9. Ouellet, J.-N., Hebert, P.: A simple operator for very precise estimation of ellipses. In: Proceedings of the Fourth Canadian Conference on Computer and Robot Vision, pp. 21–28. IEEE Computer Society (2007)

  10. Jiandong, Z., Liyan, Z., Xiaoyu, D.: Accurate 3D target positioning in close range photogrammetry with implicit image correction. Chin. J. Aeronaut. 22(6), 649–657 (2009)

    Article  Google Scholar 

  11. Ordóñez, C., et al.: Application of close range photogrammetry to deck measurement in recreational ships. Sensors 9(9), 6991–7002 (2009)

    Article  Google Scholar 

  12. Fischer, M.P., Keating, D.P.: Photogrammetric techniques for analyzing displacement, strain, and structural geometry in physical models: Application to the growth of monoclinal basement uplifts. Geol. Soc. Amer. Bull. 117(3–4), 369–382 (2005)

    Article  Google Scholar 

  13. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  14. Bay, H., et al.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  15. Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo collections. Int. J. Comput. Vis. 80(2), 189–210 (2008)

    Article  Google Scholar 

  16. Brilakis, I., Dai, F., Radopoulou, S.-C.: Achievements and challenges in recognizing and reconstructing civil infrastructure. In: Dellaert, F., et al. (eds.) Outdoor and Large-Scale Real-World Scene Analysis, pp 151–176. Springer, Berlin Heidelberg (2012)

  17. Bartoli, A., Sturm, P.: Structure-from-motion using lines: Representation, triangulation, and bundle adjustment. Comput. Vis. Image Underst. 100(3), 416–441 (2005)

    Article  Google Scholar 

  18. Wang, Z., Wu, F., Hu, Z.: MSLD: A robust descriptor for line matching. Pattern Recog. 42(5), 941–953 (2009)

    Article  Google Scholar 

  19. Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972)

    Article  MATH  Google Scholar 

  20. Li, H., Lavin, M.A., Le Master, R.J.: Fast Hough transform: A hierarchical approach. Comput. Vis. Graph. Image Process. 36(2–3), 139–161 (1986)

    Article  Google Scholar 

  21. Guil, N., Villalba, J., Zapata, E.L.: A fast Hough transform for segment detection. IEEE Trans. Image Process. 4(11), 1541–1548 (1995)

    Article  Google Scholar 

  22. Chutatape, O., Guo, L.: A modified Hough transform for line detection and its performance. Pattern Recog. 32(2), 181–192 (1999)

    Article  Google Scholar 

  23. Perantonis, S.J., et al.: Robust line detection using weighted region based Hough transform. Electron. Lett. 34(7), 648–650 (1998)

    Article  Google Scholar 

  24. Bonci, A., Leo, T., Longhi, S.: A Bayesian approach to the Hough transform for line detection. IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans 35(6), 945–955 (2005)

    Article  Google Scholar 

  25. Shneier, M.: Extracting linear features from images using pyramids. IEEE Trans. Syst. Man Cybern. 12, 569–572 (1982)

    Article  Google Scholar 

  26. Baumgartner, A., et al.: Automatic road extraction based on multi-scale, grouping, and context. Photogramm. Eng. Remote Sens. 65, 777–786 (1999)

    Google Scholar 

  27. Yan, Z., Xu, D., Tan, M.: A fast and robust method for line detection based on image pyramid and Hough transform. Trans. Inst. Meas. Control 33(8), 971–984 (2011)

    Article  Google Scholar 

  28. Yacoub, S.B., Jolion, J.-M.: Hierarchical line extraction. IEEE Proc.-Vis. Image Signal Process. 142(1), 7–14 (1995)

    Article  Google Scholar 

  29. Borgefors, G., Ramella, G., Sanniti di Baja, G.: Hierarchical decomposition of multiscale skeletons. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1296–1312 (2001)

    Article  Google Scholar 

  30. Burns, J.B., Hanson, A.R., Riseman, E.M.: Extracting straight lines. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8(4), 425–455 (1986)

    Article  Google Scholar 

  31. Gupta, A.K., Chaudhury, S., Parthasarathy, G.: A new approach for aggregating edge points into line segments. Pattern Recog. 26(7), 1069–1086 (1993)

    Article  Google Scholar 

  32. Kahn, P., Kitchen, L., Riseman, E.M.: A fast line finder for vision-guided robot navigation. IEEE Trans. Pattern Anal. Mach. Intell. 12(11), 1098–1102 (1990)

    Article  Google Scholar 

  33. Chung, K.-L., et al.: New orientation-based elimination approach for accurate line-detection. Pattern Recog. Lett. 31(1), 11–19 (2010)

    Article  Google Scholar 

  34. Jang, J.-H., Hong, K.-S.: Fast line segment grouping method for finding globally more favorable line segments. Pattern Recog. 35(10), 2235–2247 (2002)

    Article  MATH  Google Scholar 

  35. Boldt, M., Weiss, R., Riseman, E.: Token-based extraction of straight lines. IEEE Trans. Syst. Man Cybern. 19(6), 1581–1594 (1989)

    Article  Google Scholar 

  36. Nacken, P.F.M.: A metric for line segments. IEEE Trans. Pattern Anal. Mach. Intell. 15(12), 1312–1318 (1993)

    Article  Google Scholar 

  37. Tretyak, E., et al.: Geometric image parsing in man-made environments. Int. J. Comput. Vis. 97(3), 305–321 (2012)

    Article  Google Scholar 

  38. Toldo, R., Fusiello, A.: Robust multiple structures estimation with j-linkage. Lect. Notes Comput. Sci. - Eur. Conf. Comput. Vis. 5302, 537–547 (2008)

    Google Scholar 

  39. Antone, M.E., Teller, S.: Automatic recovery of relative camera rotations for urban scenes. In: Proceedings IEEE conference on computer vision and pattern recognition (2000)

  40. Zuliani, M., Kenney, C.S., Manjunath, B.S.: The multiRANSAC algorithm and its application to detect planar homographies. In: IEEE International Conference on Image Processing. ICIP (2005)

  41. Tardif, J.P.: Non-iterative approach for fast and accurate vanishing point detection. In: 12th IEEE International Conference on Computer Vision. IEEE, Kyoto (2009)

    Book  Google Scholar 

  42. Zuyang, K., Zhenwei, S., Liu, L.: Airport detection based on line segment detector. In: International Conference on Computer Vision in Remote Sensing (CVRS) (2012)

  43. Lee, D.C., Hebert, M., Kanade, T.: Geometric reasoning for single image structure recovery. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR (2009)

  44. Rosten, E., Porter, R., Drummond, T.: Faster and better: A machine learning approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 105–119 (2010)

    Article  Google Scholar 

  45. Kaehler, A., Bradski, G.: Learning OpenCV: Computer Vision in C ++ with the OpenCV Library. O’Reilly Media (2013)

  46. Denis, P., Elder, J.H., Estrada, F.J.: Efficient edge-based methods for estimating manhattan frames in urban imagery. In: European Conference on Computer Vision (2008)

  47. Dai, F., Lu, M.: Three-dimensional modeling of site elements by analytically processing image data contained in site photos. J. Constr. Eng. Manag. 139(7), 881–894 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Dai.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dai, F., Zhu, Z. Line Segment Grouping and Linking: A Key Step Toward Automated Photogrammetry for Non-Contact Site Surveying. J Intell Robot Syst 79, 371–384 (2015). https://doi.org/10.1007/s10846-014-0119-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-014-0119-5

Keywords

  • Non-contact measurement
  • Image-based method
  • 3D models
  • Infrastructure
  • Information technology
  • Construction engineering