Skip to main content

Modified Internal Model Control Scheme for the Drive Part with Elastic Joints in Robotic System

Abstract

The drive part in robotic system is usually modelled as a rigid body. However, in the practice, there exist many elastic transmission elements, which may cause vibration to reduce system performance, moreover, the vibration possibly damage the mechanical transmission elements. In this paper, a modified internal model controller (MIMC) for the speed regulation of the drive part with elastic joints in robotic system is proposed, where control structure is composed of an internal model controller (IMC) and a feedback controller. In order to improve the performance of the motor speed, the parameters of controller are set based on the rule that the settle time is shorter and vibration can be efficiently suppressed. The experiment on the two-mass test platform with one motor speed transducer has been done to verify effectiveness of the proposed control scheme.

This is a preview of subscription content, access via your institution.

References

  1. Mitsantisuk, C., Ohishi, K., Yokokura, Y.: Switching Operation Mode Resonance Ratio Control for Flexible Robot System. In: Mechatronics (ICM), 2013 IEEE International Conference on, Feb. 27 2013-March 1 2013, pp. 570–575 (2013)

  2. Mitsantisuk, C., Nandayapa, M., Ohishi, K., Katsura, S.: Resonance Ratio Control based on coefficient diagram method for force control of flexible robot system. In: Advanced Motion Control (AMC), 2012 12th IEEE International Workshop on, 25-27 March 2012, pp. 1-6 (2012)

  3. Zhang, G.: Speed control of two-inertia system by PI/PID control. IEEE Trans. Ind. Electron. 47(3), 603–609 (2000). doi:10.1109/41.847901

    Article  Google Scholar 

  4. Chengbin, M., Junyi, C., Yue, Q.: Polynomial-method-based design of low-order controllers for two-mass systems. IEEE Trans. Ind. Electron. 60(3), 969–978 (2013). doi:10.1109/TIE.2012.2188869

    Article  Google Scholar 

  5. Szabat, K., Orlowska-Kowalska, T.: Vibration suppression in a two-mass drive system using pi speed controller and additional feedbacks—comparative study. IEEE Trans. Ind. Electron. 54(2), 1193–1206 (2007). doi:10.1109/TIE.2007.892608

    Article  Google Scholar 

  6. Pera, M.C., Candusso, D., Hissel, D., Kauffmann, J.M.: Enhanced servo-control performance of dual-mass systems. IEEE Trans. Ind. Electron. 54(3), 1387–1399 (2007). doi:10.1109/TIE.2007.893048

    Article  Google Scholar 

  7. Sugiura, K., Hori, Y.: Vibration suppression in 2- and 3-mass system based on the feedback of imperfect derivative of the estimated torsional torque. IEEE Trans. Ind. Electron. 43(1), 56–64 (1996). doi:10.1109/41.481408

    Article  Google Scholar 

  8. O’Sullivan, T.M., Bingham, C.M., Schofield, N.: High-performance control of dual-inertia servo-drive systems using low-cost integrated saw torque transducers. IEEE Trans. Ind. Electron. 53(4), 1226–1237 (2006). doi:10.1109/TIE.2006.878311

    Article  Google Scholar 

  9. Thomsen, S., Hoffmann, N., Fuchs, F.W.: PI control, PI-based state space control, and model-based predictive control for drive systems with elastically coupled loads-comparative study. IEEE Trans. Ind. Electron. 58(8), 3647–3657 (2011). doi:10.1109/TIE.2010.2089950

    Article  Google Scholar 

  10. Koronki, P., Hashimoto, H., Utkin, V.: Direct torsion control of flexible shaft in an observer-based discrete-time sliding mode. IEEE Trans. Ind. Electron. 45(2), 291–296 (1998). doi:10.1109/41.681228

    Article  Google Scholar 

  11. Orlowska-Kowalska, T., Szabat, K.: Damping of torsional vibrations in two-mass system using adaptive sliding neuro-fuzzy approach. IEEE Trans. Ind. Inform. 4(1), 47–57 (2008). doi:10.1109/TII.2008.916054

    Article  Google Scholar 

  12. Orowska-Kowalska, T., Kaminski, M., Szabat, K.: Implementation of a sliding-mode controller with an integral function and fuzzy gain value for the electrical drive with an elastic joint. IEEE Trans. Ind. Electron. 57(4), 1309–1317 (2010). doi:10.1109/TIE.2009.2030823

    Article  Google Scholar 

  13. Szabat, K., Orlowska-Kowalska, T.: Performance improvement of industrial drives with mechanical elasticity using nonlinear adaptive kalman filter. IEEE Trans. Ind. Electron. 55(3), 1075–1084 (2008). doi:10.1109/TIE.2008.917081

    Article  Google Scholar 

  14. Vukosavic, S.N., Stojic, M.R.: Suppression of torsional oscillations in a high-performance speed servo drive. IEEE Trans. Ind. Electron. 45(1), 108–117 (1998). doi:10.1109/41.661311

    Article  Google Scholar 

  15. Kang, C.-I., Kim, C.-H.: An adaptive notch filter for suppressing mechanical resonance in high track density disk drives. Microsyst Technol 11(8–10), 638–652 (2005). doi:10.1007/s00542-005-0534-4

    Article  MathSciNet  Google Scholar 

  16. Wenyu, W., Jinbang, X., Anwen, S.: Detection and reduction of middle frequency resonance for industrial servo. In: Information Science and Technology (ICIST), 2012 International Conference on, 23-25 March 2012, pp. 153-160 (2012)

  17. Peter, K., Scholing, I., Orlik, B.: Robust output-feedback H∞ control with a nonlinear observer for a two-mass system. IEEE Trans. Ind. Appl. 39(3), 637–644 (2003). doi:10.1109/TIA.2003.811788

    Article  Google Scholar 

  18. Zhou, Y., Zhu, X.: Application of three-degree-freedom Internal Model Control and mechanism analysis of IMC system robustness. In: Control and Decision Conference, 2009. CCDC ’09. Chinese, 17–19 June 2009, pp. 3827–3831 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xiong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Li, Y. Modified Internal Model Control Scheme for the Drive Part with Elastic Joints in Robotic System. J Intell Robot Syst 79, 475–485 (2015). https://doi.org/10.1007/s10846-014-0118-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-014-0118-6

Keywords

  • Robotic system
  • Motor drives
  • Velocity control
  • Robustness
  • Vibration control