Skip to main content

Advertisement

Log in

Enhanced Backstepping Controller Design with Application to Autonomous Quadrotor Unmanned Aerial Vehicle

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Quadrotor unmanned aerial vehicle (UAV) is an underactuated multi-input and multi-output (MIMO) system which has nonlinear dynamic behavior such as high coupling degree and unknown nonlinearities. It is a great challenge to design a quadrotor control system due to these features. In this paper, the contribution is focused on the backstepping-based robust control design of the quadrotor UAV. Firstly, the dynamic model of the aerial vehicle is mathematically formulated. Then, a robust controller is designed for the stabilization and tracking control of the vehicle. The developed robust control system comprises a backstepping and a proportional-derivative (PD) controller. Backstepping is a recursive design methodology that uses Lyapunov theorem which can guarantee the stability of the nominal model system, while PD control is used to attenuate the effects caused by system uncertainties. For the problem of determining the backstepping control parameters, particle swarm optimization (PSO) algorithm has been employed. In addition, the genetic algorithm (GA) technique is also adopted for the purpose of performance comparison with PSO scheme. Finally, the designed controller is experimentally evaluated on a quadrotor simulation environment to demonstrate the effectiveness and merits of the theoretical development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salazar-Cruz, S., Escareno, J., Lara, D., Lozano, R.: Embedded control system for a four-rotor UAV. Int. J. Adap. Control Sig. Process. 21(2-3), 189– 204 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bouabdallah, S., Murrieri, P., Siegwart, R.: Design and control of an Indoor micro quadrotor. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 4393–4398 (2004)

  3. Castillo, P., Lozano, R., Dzul, A.: Stabilization of a mini rotorcraft with four rotors. IEEE Control Syst. Mag. 25(6), 45–55 (2005)

    Article  MathSciNet  Google Scholar 

  4. Salih, A.L., Moghavvemi, M., Mohamed, H.A.F., Gaeid, K.S.: Modelling and PID controller design for a quadrotor unmanned air vehicle. In: IEEE International Conference on Automation Quality and Testing Robotics (AQTR), pp. 1-5, 28-30 May 2010 (2010)

  5. Santos, M., López, V., Morata, F.: Intelligent fuzzy controller of a quadrotor. In: IEEE International Conference on Intelligent Systems and Knowledge Engineering (ISKE), pp. 141–146 (2010)

  6. Xu, R., Ozguner, U.: Sliding mode control of a quadrotor helicopter. In: IEEE Conference on Decision and Control, pp. 4957–4962 (2006)

  7. Madani, T., Benallegue, A.: Backstepping Control for a Quadrotor Helicopter. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3255–3260, 9–15 Oct 2006 (2006)

  8. Bouadi, H., Bouchoucha, M., Tadjine, M.: Modelling and stabilizing control laws design based on backstepping for an UAV type-quadrotor. In: Proceedings of the IFAC Symposium on Intelligent Autonomous Vehicles, pp. 245–250, Toulouse (2007)

  9. Raffo, G.V., Ortega, M.G., Rubio, F.R.: Backstepping/nonlinear H∞control for path tracking of a quadrotor unmanned aerial vehicle. In: American Control Conference, pp. 3356–3361, 11–13 June 2008 (2008)

  10. Regula, G., Lantos, B.: Backstepping based control design with state estimation and path tracking to an indoor quadrotor helicopter. Electr. Eng. Comput. Sci. 53(3-4), 151–161 (2011)

    Google Scholar 

  11. Kaloust, J., Ham, C., Siehling, J., Jongekryg, E., Han, Q.: Nonlinear robust control design for levitation and propulsion of a maglev system. IEE Proc. Control Theory Appl. 151(4), 460–464 (2004)

    Article  Google Scholar 

  12. Diao, C., Xian, B., Yin, Q., Zeng, W., Li, H., Yang, Y.: A nonlinear adaptive control approach for quadrotor UAVs. In: Proceedings of the IEEE 8th Asian Control Conference (ASCC), pp. 223–228 (2011)

  13. Mohammadi, M., Shahri, A.M., Boroujeni, Z.: Modeling and Adaptive Tracking Control of a Quadrotor UAV. Int. J. Intell. Mechatron. Robot 2(4), 58–81 (2012)

    Article  Google Scholar 

  14. De Monte, P., Lohmann, B.: Position trajectory tracking of a quadrotor helicopter based on L1 adaptive control. In: European Control Conference (ECC), pp. 3346–3353, 17–19 Jul 2013 (2013)

  15. De Queiroz, M.S., Dawson, D.M.: Nonlinear control of active magnetic bearings: a backstepping approach. IEEE Trans. Control Syst. Technol. 4(5), 545–552 (1996)

    Article  Google Scholar 

  16. Kim, K.S., Kim, Y.: Robust backstepping control for slew maneuver using nonlinear tracking function. IEEE Trans. Control Syst. Technol. 11(6), 822–829 (2003)

    Article  Google Scholar 

  17. Karimi, A., Feliachi, A.: Decentralized adaptive backstepping control of electric power systems. Electr. Power Syst. Res. 78(3), 484–493 (2008)

    Article  Google Scholar 

  18. Xie, Q., Han, Z., Kang, H.: Adaptive backstepping control for hybrid excitation synchronous machine with uncertain parameters. Expert Syst. Appl. 37(10), 7280–7284 (2010)

    Article  Google Scholar 

  19. Ursu, I., Ursu, F., Popescu, F.: Backstepping design for controlling electrohydraulic servos. J. Frankl. Inst. 343(1), 94–110 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hu, Q., Xu, L., Zhang, A.: Adaptive backstepping trajectory tracking control of robot manipulator. J. Frankl. Inst. 349(3), 1087–1105 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hamida, M.A., Glumineau, A., De Leon, J.: Robust integral backstepping control for sensorless IPM synchronous motor controller. J. Frankl. Inst. 349(5), 1734– 1757 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Krstic, M., Kanellakopoulos, I., Kokotovic, P.: Nonlinear and adaptive control design, Vol. 222. Wiley New York (1995)

  23. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

  24. Abido, M.: Optimal design of power-system stabilizers using particle swarm optimization. IEEE Trans. Energy Convers. 17(3), 406–413 (2002)

    Article  Google Scholar 

  25. Rini, D.P., Shamsuddin, S.M., Yuhaniz, S.S.: Particle swarm optimization: Technique, system and challenges. Int. J. Comput. Appl. 14(1), 19–27 (2011)

    Google Scholar 

  26. Marinaki, M., Marinakis, Y., Stavroulakis, G.E.: Fuzzy control optimized by a multi-objective particle swarm optimization algorithm for vibration suppression of smart structures. Struct. Multidiscip. Optim. 43(1), 29– 42 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Witkowska, A, Smierzchalski, R.: Nonlinear backstepping ship course controller. Int. J. Autom. Comput. 6(3), 277–284 (2009)

    Article  Google Scholar 

  28. Sahab, A.R., Modabbernia, M.R.: Back stepping method for a single-link flexible-joint manipulator using genetic algorithm. Int. J. Innov. Comput. Inf. Control 7(7 B), 4161–4170 (2011)

    Google Scholar 

  29. Hassan, R., Cohanim, B., De Weck, O., Venter, G.: A comparison of particle swarm optimization and the genetic algorithm. In: Proceedings of the 1st AIAA multidisciplinary design optimization specialist conference (2005)

  30. Lalitha, M.P., Reddy, V.V., Usha, V.: Optimal DG placement for minimum real power loss in radial distribution systems using PSO. J. Theor. Appl. Inf. Technol. 13(2), 107–116 (2010)

    Google Scholar 

  31. Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 84–88 (2000)

  32. Allaoua, B., Gasbaoui, B., Mebarki, B.: Setting up PID DC motor speed control alteration parameters using particle swarm optimization strategy. Leonardo Electron. J. Pract. Technol. 14, 19–32 (2009)

    Google Scholar 

  33. Voos, H.: Nonlinear control of a quadrotor Micro-UAV using Feedback-Linearization. In: IEEE International Conference on Mechatronics, pp. 1–6 (2009)

  34. Eberhart, R.C., Shi, Y.: Comparison between Genetic Algorithms and Particle Swarm Optimization. In: Proceedings of the 7th International Conference on Evolutionary Programming, pp. 611–616 (1998)

  35. Waslander, S.L., Wang, C.: Wind disturbance estimation and rejection for quadrotor position control. In: AIAA Infotech@Aerospace conference and AIAA unmanned…Unlimited Conference (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Ariffanan Mohd Basri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohd Basri, M.A., Husain, A.R. & Danapalasingam, K.A. Enhanced Backstepping Controller Design with Application to Autonomous Quadrotor Unmanned Aerial Vehicle. J Intell Robot Syst 79, 295–321 (2015). https://doi.org/10.1007/s10846-014-0072-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-014-0072-3

Keywords

Navigation