Journal of Intelligent & Robotic Systems

, Volume 78, Issue 1, pp 33–46 | Cite as

Control of Redundant Joint Structures Using Image Information During the Tracking of Non-Smooth Trajectories

  • Gonzalo Lorenzo
  • Jorge PomaresEmail author
  • Asuncion Lledó
  • Carlos A. Jara


Visual information is increasingly being used in a great number of applications in order to perform the guidance of joint structures. This paper proposes an image-based controller which allows the joint structure guidance when its number of degrees of freedom is greater than the required for the developed task. In this case, the controller solves the redundancy combining two different tasks: the primary task allows the correct guidance using image information, and the secondary task determines the most adequate joint structure posture solving the possible joint redundancy regarding the performed task in the image space. The method proposed to guide the joint structure also employs a smoothing Kalman filter not only to determine the moment when abrupt changes occur in the tracked trajectory, but also to estimate and compensate these changes using the proposed filter. Furthermore, a direct visual control approach is proposed which integrates the visual information provided by this smoothing Kalman filter. This last aspect permits the correct tracking when noisy measurements are obtained. All the contributions are integrated in an application which requires the tracking of the faces of Asperger children.


Service robots Robot vision Image-based control Control of joint structures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schiffer, S., Ferrein, A., Lakemeyer, G.: Caesar: an intelligent domestic service robot. J. Intell. Serv. Robot 5 (4), 259–273 (2012)CrossRefGoogle Scholar
  2. 2.
    Chaumette, F., Hutchinson, S.: Visual servo control, Part I: Basic approaches. IEEE Robot. Autom. Mag 13 (4), 82–90 (2006)CrossRefGoogle Scholar
  3. 3.
    Pomares, J., Corrales, J.A., Garcia, G.J., Torres, F.: Direct visual Servoing to track trajectories in human-robot cooperation. Int. J. Adv. Robot. Syst. 8 (4), 129–138 (2010)Google Scholar
  4. 4.
    Garcia, G.J., Corrales, J.A., Pomares, J., Torres, F.: Survey of visual and force/tactile control of robots for physical interaction in spain. Sensors 9 (12), 9689–9733 (2009)CrossRefGoogle Scholar
  5. 5.
    Farooq, M., Wang, D.B.: Hybrid force/position control scheme for flexible joint robot with friction between and the end-effector and the environment. Int. J. Eng. Sci 46 (12), 1266–1278 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Kalman, R.E.: A New Approach to Linear Filtering and Prediction Problems. Trans. ASME-J. Basic. Eng 82 (D), 35–45 (1960)CrossRefGoogle Scholar
  7. 7.
    Simon, D.: Kalman Filtering. Embed. Syst. Program 14 (6), 72–79 (2001)Google Scholar
  8. 8.
    Foxlin, E.: Pedestrian tracking with shoe-mounted inertial sensors. IEEE Comput Graph. Appl 25 (6), 38–46 (2005)CrossRefGoogle Scholar
  9. 9.
    Roetenberg, D., Slycke, P.J., Veltink, P.H.: Ambulatory position and orientation tracking fusing magnetic and inertial sensing. IEEE Trans. Biomed. Eng 54 (5), 883–890 (2007)CrossRefGoogle Scholar
  10. 10.
    Caron, F., Duflos, E., Pomorski, D., Vanheeghe, P.: GPS/IMU data fusion using Multisensor Kalman Filtering: Introduction of contextual aspects. Inf. Fusion 7 (2), 221–230 (2006)CrossRefGoogle Scholar
  11. 11.
    Ribo, M., Brandner, M., Pinz, A.: A flexible software architecture for hybrid tracking. J. Robot. Syst 21 (2), 53–62 (2004)CrossRefGoogle Scholar
  12. 12.
    Silveira, G., Archer, R.: Direct visual Servoing: Vision-based estimation and control using only nonmetric information. IEEE Trans. Robot 28 (4), 974–980 (2012)CrossRefGoogle Scholar
  13. 13.
    Bertozzi, M., Broggi, A., Fascioli, A.: Vision-based intelligent vehicles: State of the art and perspectives. Robot. Auton. Syst 32 (1), 1–16 (2000)CrossRefGoogle Scholar
  14. 14.
    Royer, E., Bom, J., Dhome, M., Thuilot, B., Lhuillier, M., Marmoiton, F.: Outdoor autonomous navigation using monocular vision, In: 2005 IEEE/RSJ international conference on intelligent robots and systems, Aug. 2005, pp. 1253–1258Google Scholar
  15. 15.
    Pomares, J., Torres, F.: Movement-flow-based visual servoing and force control fusion for Manipulation Tasks in unstructured environments. IEEE Transactions on Systems, Man, and Cybernetics. Part C 35 (1), 4–15 (2005)Google Scholar
  16. 16.
    Mezouar, Y., Chaumette, F. Path planning for robust image-based control 18 (4), 534–549 (2002)Google Scholar
  17. 17.
    Garcia, G.J., Jara, C.A., Pomares, J., Torres, F.: Direct visual servo control of a robot to track trajectories in supervision tasks. 11th International Conference on Control Automation Robotics & Vision (ICARCV), 2010, pp. 1434–1439Google Scholar
  18. 18.
    Pomares, J., Candelas, F.A., Torres, F., Corrales, J.A., Garcia, G.J.: Safe human-robot cooperation based on an adaptive time-independent image path tracker. Int. J. Innov. Comput, Inf. Control 6 (9), 3819–3842 (2010)Google Scholar
  19. 19.
    Cheah, C.C., Liu, C., Slotine, J.E.: Adaptive Vision based Tracking Control of Robots with Uncertainty in Depth Information, In: 2007 IEEE International Conference on Robotics and Automation, April 2007, pp. 2822–2817Google Scholar
  20. 20.
    De Luca, A., Ferri, M., Oriolo, G., Giordano, P.R.: Visual servoing with exploitation of redundancy: An experimental study. In: 2008 IEEE international conference on robotics and automation. Pasadena, CA, USA, May, 2008, pp. 3231–3237Google Scholar
  21. 21.
    Kumar, S., Premkumar, P., Dutta, A., Behera, L.: Visual motor control of a 7DOF redundant manipulator using redundancy preserving learning network. Robotica 28, 795–810 (2010)CrossRefGoogle Scholar
  22. 22.
    Mansard, N., Chaumette, F, Chaumette, F.: A new redundancy formalism for avoidance in visual servoing IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Canada August, 2005, pp. 1694–1700Google Scholar
  23. 23.
    Sawo, F., Fujita, M., Sawodny, O.: Passivity-based dynamic visual feedback control of manipulators with kinematic redundancy. In: 2005 IEEE Conference on Control Applications, August, 2005, pp. 1200– 1205Google Scholar
  24. 24.
    Trujano, M.A., Garrido, R., Soria, A. In: Mansour, T., InTech, Ed. (eds.) : Stable Visual PID Control of Redundant Planar Parallel Robots, in PID Control, Implementation and Tuning, pp 27–50 (2011)Google Scholar
  25. 25.
    Pomares, J., Perea, I., García, G.J., Jara, C.A., Corrales, J.A., Torres, F.: A multi-sensorial hybrid control for robotic manipulation in human-robot workspaces. Sensors (Basel) 11 (10), 9839–9862 (2011)CrossRefGoogle Scholar
  26. 26.
    Correa, M., Hermosilla, G., Verschae, R., Ruiz-del-Solar, J.: Human Detection and Identification by Robots using Thermal and Visual Information in Domestic Environments. J. Intell. Robot. Syst 66, 223–243 (2012)CrossRefGoogle Scholar
  27. 27.
    Lorenzo, G., Pomares, J., Lledó, A.: Inclusion of immersive virtual learning environments and visual control systems to support the learning of students with Asperger syndrome. Comput. & Educ 62, 88–101 (2013)CrossRefGoogle Scholar
  28. 28.
    Ernst, A., Ruf, T., Küblbeck, C.: A modular framework to detect and analyze faces for audience measurement systems. In: 2nd Workshop on Pervasive Advertising 2009, Lüb-eck, Germany: 75–87, 2009Google Scholar
  29. 29.
    Ertürk, S.: Real-Time Digital Image StabilizationUsing Kalman Filters. Real-Time Imaging 8, 317–328 (2002)CrossRefzbMATHGoogle Scholar
  30. 30.
    Lippiello, V., Siciliano, B., Villani, L.: Visual motion tracking with full adaptive extended Kalman filter: an experimental study, 16 th IFAC World Congress, Prague Czech Republic, July 2005Google Scholar
  31. 31.
    Gelb, A.: Applied optimal estimation. Cambridge, MA (1974)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Gonzalo Lorenzo
    • 1
  • Jorge Pomares
    • 2
    Email author
  • Asuncion Lledó
    • 3
  • Carlos A. Jara
    • 2
  1. 1.Department of General and Specific DidacticsUniversity of AlicanteAlicanteSpain
  2. 2.Department of Physics, System Engineering and Signal TheoryUniversity of AlicanteAlicanteSpain
  3. 3.Department of Developmental and Educational PsychologyUniversity of AlicanteAlicanteSpain

Personalised recommendations