Skip to main content
Log in

Active SLAM and Exploration with Particle Filters Using Kullback-Leibler Divergence

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Autonomous exploration under uncertain robot location requires the robot to use active strategies to trade-off between the contrasting tasks of exploring the unknown scenario and satisfying given constraints on the admissible uncertainty in map estimation. The corresponding problem, namely active SLAM (Simultaneous Localization and Mapping) and exploration, has received a large attention from the robotic community for its relevance in mobile robotics applications. In this work we tackle the problem of active SLAM and exploration with Rao-Blackwellized Particle Filters. We propose an application of Kullback-Leibler divergence for the purpose of evaluating the particle-based SLAM posterior approximation. This metric is then applied in the definition of the expected information from a policy, which allows the robot to autonomously decide between exploration and place revisiting actions (i.e., loop closing). Extensive tests are performed in typical indoor and office environments and on well-known benchmarking scenarios belonging to SLAM literature, with the purpose of comparing the proposed approach with the state-of-the-art techniques and to evaluate the maturity of truly autonomous navigation systems based on particle filtering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Durrant-Whyte, H., Bailey, T.: Simultaneous localisation and mapping (SLAM): part I. The essential algorithms. Robot. Autom. Mag. 13, 99–110 (2006)

    Article  Google Scholar 

  2. Durrant-Whyte, H., Bailey, T.: Simultaneous localisation and mapping (SLAM): part II. State of the art. Robot. Autom. Mag. 13, 108–117 (2006)

    Article  Google Scholar 

  3. Castellanos, J.A., Martinez-Cantin, R., Tardós, J.D., Neira, J.: Robocentric map joining: improving the consistency of EKF-SLAM. Robot. Auton. Syst. 55(1), 21–29 (2007)

    Article  Google Scholar 

  4. Doucet, A., de Freitas, J., Murphy, K., Russel, S.: Rao-Blackwellized particle filtering for dynamic bayesian networks. In: Proc. of the Conference on Uncertainty in Artificial Intelligence, pp. 176–183 (2000)

  5. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press (2005)

  6. Martinez-Cantin, R., De Freitas, N., Castellanos, J.: Analysis of particle methods for simultaneous robot localization and mapping and a new algorithm: marginal-SLAM. In: Proc. of the IEEE lnternational Conf. on Robotics and Automation (2007)

  7. Bourgault, F., Makarenko, A.A., Williams, S.B., Grocholsky, B., Durrant-Whyte, H.F.: Information based adaptive robotic exploration. In: Proc. of the IEEE-RSJ Int. Conf. on Intelligent Robots and Systems, pp. 540–545 (2002)

  8. Martinez-Cantin, R., De Freitas, N., Doucet, A., Castellanos, J.A.: Active policy learning for robot planning and exploration under uncertainty. In: Proc. of Robotics: Science and Systems (2007)

  9. Sim, R., Roy, N.: Global A-optimal robot exploration in SLAM. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, pp. 661–666 (2005)

  10. Martinez-Cantin, R., De Freitas, N., Brochu, E., Castellanos, J., Doucet, A.: A Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot. Auton. Robot. 27(2), 93–103 (2009)

    Article  Google Scholar 

  11. Carrillo, H., Reid, I., Castellanos, J.A.: On the comparison of uncertainty criteria for active SLAM. In: Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 2080–2087 (2012)

  12. Valencia, R., Andrade-Cetto, J., Porta, J.M.: Path planning in belief space with pose SLAM. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, pp. 78–83 (2011)

  13. Valencia, R., Valls Miró, J., Dissanayake, G., Andrade-Cetto, J.: Active pose SLAM. In: Proc. of the IEEE Int. Conf. on Intelligent Robots and Systems, pp. 1885–1891 (2012)

  14. Blanco, J.L., Fernandez-Madrigal, J.A., Gonzalez, J.: A novel measure of uncertainty for mobile robot SLAM with Rao-Blackwellized Particle Filters. Int. J. Robot. Res. 27(1), 73–89 (2008)

    Article  Google Scholar 

  15. Carlone, L., Du, J., Kaouk Ng, M., Bona, B., Indri, M.: An application of Kullback-Leibler divergence to active SLAM and exploration with particle filters. In: Proc. of the IEEE Int. Conf. on Intelligent Robots and Systems, pp. 287–293 (2010)

  16. Carlone, L., Kaouk Ng, M., Du, J., Bona, B., Indri, M.: Reverse KLD-sampling for measuring uncertainty in Rao-Blackwellized Particle Filters SLAM. In: Proc. of the Workshop on Performance Evaluation and Benchmarking for Next Intelligent Robots and Systems. IEEE-RSJ Int. Conf. on Intelligent Robots and Systems (2009)

  17. Du, J., Carlone, L., Kaouk Ng, M., Bona, B., Indri, M.: A comparative study on active SLAM and autonomous exploration with particle filters. In: Proc. of the IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, pp. 916–923 (2011)

  18. Kullback, S., Leibler, A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  19. Stachniss, C., Grisetti, G., Burgard, W.: Information gain-based exploration using Rao-Blackwellized Particle Filters. In: Proc. of Robotics: Science and Systems (2005)

  20. Moravec, H.P.: Sensor fusion in certainty grids for mobile robots. AI Mag. 9(2), 61–74 (1988)

    Google Scholar 

  21. Yamauchi, B.: A frontier-based approach for autonomous exploration. In: Proc. of CIRA vol. 97, pp. 146–151 (1997)

  22. Fox, D., Ko, J., Konolige, K., Limketkai, B., Schulz, D., Stewart, B.: Distributed multirobot exploration and mapping. Proc. IEEE 94(7), 1325–1339 (2006)

    Article  Google Scholar 

  23. Moorehead, S.J., Simmons, R., Whitaker, W.L.: Autonomous exploration using multiple sources of information. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, pp. 3098–3103 (2001)

  24. Stachniss, C., Hahnel, D., Burgard, W.: Exploration with active loop-closing for FastSLAM. In: Proc. of the IEEE-RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1505–1510 (2004)

  25. Ko, J., Stewart, B., Fox, D., Konolige, K., Limketkai, B.: A practical decision-theoretic approach to multirobot mapping and exploration. In: Proc. of the IEEE-RSJ Int. Conf. on Intelligent Robotics and Systems, pp. 3232–3238 (2003)

  26. Stachniss, C., Grisetti, G., Burgard, W.: Analyzing Gaussian proposal distributions for mapping with Rao-Blackwellized Particle Filters. In: Proc. of Int. Conf. on Intelligent Robots and Systems, pp. 3485–3490 (2007)

  27. Arulampalam, S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filter for on-line nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 2(50), 174–188 (2002)

    Article  Google Scholar 

  28. Fox, D.: Adapting the sample size in particle filters through KLD-sampling. Int. J. Robot. Res. 22(12), 985–1003 (2003)

    Article  Google Scholar 

  29. Carpin, S.: Fast and accurate map merging for multi-robot systems. Auton. Robot. 25(3), 305–316 (2008)

    Article  Google Scholar 

  30. Howard, A.: Multi-robot simultaneous localization and mapping using particle filters. In: Proc. of Robotics: Science and Systems, pp. 201–208 (2006)

  31. Roy, N., Burgard, W., Fox, D., Thrun, S.: Coastal navigation: mobile robot navigation with uncertainty in dynamic environments. In: Proc. of Int. Conf. on Robotics and Automation, pp. 35–40 (1999)

  32. MobileRobots Inc.: MobileSim-the mobile robots simulator. http://www.robots.mobilerobots.com/MobileSim (2011). Accessed 10 Apr 2013

  33. Robotics Research Group (RRG): Politecnico di Torino. http://www.polito.it/LabRob (2011). Accessed 10 Apr 2013

  34. Kümmerle, R., Steder, B., Dornhege, C., Ruhnke, M., Grisetti, G., Stachniss, C., Kleiner, A.: Slam benchmarking webpage. http://ais.informatik.uni-freiburg.de/slamevaluation (2009). Accessed 10 Apr 2013

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Carlone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlone, L., Du, J., Kaouk Ng, M. et al. Active SLAM and Exploration with Particle Filters Using Kullback-Leibler Divergence. J Intell Robot Syst 75, 291–311 (2014). https://doi.org/10.1007/s10846-013-9981-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-9981-9

Keywords

Navigation