Skip to main content

Fault-Tolerant Formation Driving Mechanism Designed for Heterogeneous MAVs-UGVs Groups

Abstract

A fault-tolerant method for stabilization and navigation of 3D heterogeneous formations is proposed in this paper. The presented Model Predictive Control (MPC) based approach enables to deploy compact formations of closely cooperating autonomous aerial and ground robots in surveillance scenarios without the necessity of a precise external localization. Instead, the proposed method relies on a top-view visual relative localization provided by the micro aerial vehicles flying above the ground robots and on a simple yet stable visual based navigation using images from an onboard monocular camera. The MPC based schema together with a fault detection and recovery mechanism provide a robust solution applicable in complex environments with static and dynamic obstacles. The core of the proposed leader-follower based formation driving method consists in a representation of the entire 3D formation as a convex hull projected along a desired path that has to be followed by the group. Such an approach provides non-collision solution and respects requirements of the direct visibility between the team members. The uninterrupted visibility is crucial for the employed top-view localization and therefore for the stabilization of the group. The proposed formation driving method and the fault recovery mechanisms are verified by simulations and hardware experiments presented in the paper.

This is a preview of subscription content, access via your institution.

References

  1. Faigl, J., Krajník, T., Chudoba, J., Preucil, L., Saska, M.: Low-cost embedded system for relative localization in robotic swarms. In: Proc. of IEEE International Conference on Robotics and Automation (2013)

  2. Krajník, T., Faigl, J., Vonásek, M., Kulich, V., Košnar, K., Přeučil, L.: Simple yet stable bearing-only navigation. J. Field Robot. 27(5), 511–533 (2010)

    Article  Google Scholar 

  3. Saska, M., Krajník, T., Přeučil, L.: Cooperative micro uav-ugv autonomous indoor surveillance. In: IEEE SSD (2012)

  4. Dong, W.: Robust formation control of multiple wheeled mobile robots. J. Intell. Robot. Syst. 62(3–4), 547–565 (2011)

    Article  MATH  Google Scholar 

  5. Hengster-Movrić, K., Bogdan, S., Draganjac, I.: Multi-agent formation control based on bell-shaped potential functions. J. Intell. Robot. Syst. 58(2), 165–189 (2010)

    Article  MATH  Google Scholar 

  6. Liu, Y., Jia, Y.: An iterative learning approach to formation control of multi-agent systems. Syst. Control Lett. 61(1), 148–154 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Do, K.D., Lau, M.W.: Practical formation control of multiple unicycle-type mobile robots with limited sensing ranges. J. Intell. Robot. Syst. 64(2), 245–275 (2011)

    Article  MATH  Google Scholar 

  8. Ghommam, J., Mehrjerdi, H., Saad, M., Mnif, F.: Formation path following control of unicycle-type mobile robots. Robot. Auton. Syst. 58(5), 727–736 (2010)

    Article  Google Scholar 

  9. Sira-Ramiandrez, H., Castro-Linares, R.: Trajectory tracking for non-holonomic cars: a linear approach to controlled leader-follower formation. In: IEEE Conf. on Decision and Control (CDC) (2010)

  10. Xiao, F., Wang, L., Chen, J., Gao, Y.: Finite-time formation control for multi-agent systems. Automatica 45(11), 2605–2611 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. No, T.S., Kim, Y., Tahk, M.-J., Jeon, G.-E.: Cascade-type guidance law design for multiple-uav formation keeping. Aerosp. Sci. Technol. 15(6), 431–439 (2011)

    Article  Google Scholar 

  12. Saffarian, M., Fahimi, F.: Non-iterative nonlinear model predictive approach applied to the control of helicopters group formation. Robot. Auton. Syst. 57(67), 749–757 (2009)

    Article  Google Scholar 

  13. Liu, C., Chen, W.-H., Andrews, J.: Piecewise constant model predictive control for autonomous helicopters. Robot. Auton. Syst. 59(78), 571–579 (2011)

    Article  Google Scholar 

  14. Abdessameud, A., Tayebi, A.: Formation control of vtol unmanned aerial vehicles with communication delays. Automatica 47(11), 2383–2394 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Tanner, H., Christodoulakis, D.: Decentralized cooperative control of heterogeneous vehicle groups. Robot. Auton. Syst. 55(11), 811–823 (2007)

    Article  Google Scholar 

  16. Isermann, R.: Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance. Springer (2006)

  17. Freddi, A., Longhi, S., Monteriu, A.: Actuator fault detection system for a mini-quadrotor. In: IEEE International Symposium on Industrial Electronics (ISIE), pp. 2055–2060. IEEE (2010)

  18. Heredia, G., Ollero, A., Bejar, M., Mahtani, R.: Sensor and actuator fault detection in small autonomous helicopters. Mechatronics 18(2), 90–99 (2008)

    Article  Google Scholar 

  19. Ranjbaran, M., Khorasani, K.: Fault recovery of an under-actuated quadrotor aerial vehicle. In: 49th IEEE Conference on Decision and Control (CDC), pp. 4385–4392. IEEE (2010)

  20. Ranjbaran, M., Khorasani, K.: Generalized fault recovery of an under-actuated quadrotor aerial vehicle. In: American Control Conference (ACC), pp. 2515–2520. IEEE (2012)

  21. Mead, R., Long, R., Weinberg, J.B.: Fault-tolerant formations of mobile robots. In: IEEE/RSJ IROS, pp. 4805–4810. IEEE (2009)

  22. Chamseddine, A., Zhang, Y., Rabbath, C.A.: Trajectory planning and re-planning for fault tolerant formation flight control of quadrotor unmanned aerial vehicles. In: American Control Conference (ACC), pp. 3291–3296. IEEE (2012)

  23. Heredia, G., Caballero, F., Maza, I., Merino, L., Viguria, A., Ollero, A.: Multi-uav cooperative fault detection employing vision based relative position estimation. In: Proceedings of the 17th IFAC World Congress, pp. 12 093–12 098 (2008)

  24. Heredia, G., Caballero, F., Maza, I., Merino, L., Viguria, A., Ollero, A.: Multi-unmanned aerial vehicle (UAV) cooperative fault detection employing differential global positioning (DGPS), inertial and vision sensors. Sensors 9(9), 7566–7579 (2009)

    Article  Google Scholar 

  25. Ismail, A.R., Timmis, J.: Aggregation of swarms for fault tolerance in swarm robotics using an immuno-engineering approach. In: UK Workshop on Computational Intelligence (2009)

  26. Christensen, A.L., O’Grady, R., Dorigo, M.: From fireflies to fault-tolerant swarms of robots. IEEE Trans. Evol. Comput. 13(4), 754–766 (2009)

    Article  Google Scholar 

  27. Barambones, O., Etxebarria, V.: Robust adaptive control for robot manipulators with unmodelled dynamics. Cybern. Syst. 31(1), 67–86 (2000)

    Article  MATH  Google Scholar 

  28. Alamir, M.: Stabilization of Nonlinear Systems Using Receding-Horizon Control Schemes. Ser. Lecture Notes in Control and Information Sciences, vol. 339. Springer, Berlin/Heidelberg (2006)

    MATH  Google Scholar 

  29. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: stability and optimality. Automatica 36(6), 789–814 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Boscariol, P., Gasparetto, A., Zanotto, V.: Model predictive control of a flexible links mechanism. J. Intell. Robot. Syst. 58(2), 125–147 (2010)

    Article  MATH  Google Scholar 

  31. Chao, Z., Zhou, S.-L., Ming, L., Zhang, W.-G.: Uav formation flight based on nonlinear model predictive control. Math. Probl. Eng. 2012(1), 1–16 (2012)

    Article  Google Scholar 

  32. Defoort, M.: Distributed receding horizon planning for multi-robot systems. In: IEEE International Conference on Control Applications (CCA), pp. 1263–1268 (2010)

  33. Zhang, X., Duan, H., Yu, Y.: Receding horizon control for multi-uavs close formation control based on differential evolution. Sci. China Inf. Sci. 53(2), 223–235 (2010)

    Article  Google Scholar 

  34. Saska, M., Krajník, T., Vonásek, V., Vanek, P., Preucil, L.: Navigation, localization and stabilization of formations of unmanned aerial and ground vehicles. In: ICUAS (2013)

  35. Krajník, T., Nitsche, M., Pedre, S., Přeučil, L., Mejail, M.: A simple visual navigation system for an UAV. In: International Multi-Conference on Systems, Signals and Devices, p. 34. IEEE, Piscataway (2012)

    Google Scholar 

  36. Krajník, T., Vonásek, V., Fišer, D., Faigl, J.: AR-drone as a platform for robotic research and education. In: Research and Education in Robotics: EUROBOT 2011. Springer, Heidelberg (2011)

    Google Scholar 

  37. Barfoot, T.D., Clark, C.M.: Motion planning for formations of mobile robots. Robot. Auton. Syst. 46, 65–78 (2004)

    Article  Google Scholar 

  38. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer (2006)

  39. Movie: Movie of hw experiment and simulation presented in this paper. Online: http://imr.felk.cvut.cz/formation/ (2013). cit. 2013-2-22

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Saska.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Saska, M., Krajník, T., Vonásek, V. et al. Fault-Tolerant Formation Driving Mechanism Designed for Heterogeneous MAVs-UGVs Groups. J Intell Robot Syst 73, 603–622 (2014). https://doi.org/10.1007/s10846-013-9976-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-9976-6

Keywords

  • Mobile robots
  • Micro aerial vehicles
  • Formation driving
  • Fault detection and recovery
  • Model predictive control
  • Leader-follower
  • Trajectory planning