Journal of Intelligent & Robotic Systems

, Volume 73, Issue 1–4, pp 603–622 | Cite as

Fault-Tolerant Formation Driving Mechanism Designed for Heterogeneous MAVs-UGVs Groups

  • Martin Saska
  • Tomáš Krajník
  • Vojtěch Vonásek
  • Zdeněk Kasl
  • Vojtěch Spurný
  • Libor Přeučil


A fault-tolerant method for stabilization and navigation of 3D heterogeneous formations is proposed in this paper. The presented Model Predictive Control (MPC) based approach enables to deploy compact formations of closely cooperating autonomous aerial and ground robots in surveillance scenarios without the necessity of a precise external localization. Instead, the proposed method relies on a top-view visual relative localization provided by the micro aerial vehicles flying above the ground robots and on a simple yet stable visual based navigation using images from an onboard monocular camera. The MPC based schema together with a fault detection and recovery mechanism provide a robust solution applicable in complex environments with static and dynamic obstacles. The core of the proposed leader-follower based formation driving method consists in a representation of the entire 3D formation as a convex hull projected along a desired path that has to be followed by the group. Such an approach provides non-collision solution and respects requirements of the direct visibility between the team members. The uninterrupted visibility is crucial for the employed top-view localization and therefore for the stabilization of the group. The proposed formation driving method and the fault recovery mechanisms are verified by simulations and hardware experiments presented in the paper.


Mobile robots Micro aerial vehicles Formation driving Fault detection and recovery Model predictive control Leader-follower Trajectory planning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Faigl, J., Krajník, T., Chudoba, J., Preucil, L., Saska, M.: Low-cost embedded system for relative localization in robotic swarms. In: Proc. of IEEE International Conference on Robotics and Automation (2013)Google Scholar
  2. 2.
    Krajník, T., Faigl, J., Vonásek, M., Kulich, V., Košnar, K., Přeučil, L.: Simple yet stable bearing-only navigation. J. Field Robot. 27(5), 511–533 (2010)CrossRefGoogle Scholar
  3. 3.
    Saska, M., Krajník, T., Přeučil, L.: Cooperative micro uav-ugv autonomous indoor surveillance. In: IEEE SSD (2012)Google Scholar
  4. 4.
    Dong, W.: Robust formation control of multiple wheeled mobile robots. J. Intell. Robot. Syst. 62(3–4), 547–565 (2011)CrossRefzbMATHGoogle Scholar
  5. 5.
    Hengster-Movrić, K., Bogdan, S., Draganjac, I.: Multi-agent formation control based on bell-shaped potential functions. J. Intell. Robot. Syst. 58(2), 165–189 (2010)CrossRefzbMATHGoogle Scholar
  6. 6.
    Liu, Y., Jia, Y.: An iterative learning approach to formation control of multi-agent systems. Syst. Control Lett. 61(1), 148–154 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Do, K.D., Lau, M.W.: Practical formation control of multiple unicycle-type mobile robots with limited sensing ranges. J. Intell. Robot. Syst. 64(2), 245–275 (2011)CrossRefzbMATHGoogle Scholar
  8. 8.
    Ghommam, J., Mehrjerdi, H., Saad, M., Mnif, F.: Formation path following control of unicycle-type mobile robots. Robot. Auton. Syst. 58(5), 727–736 (2010)CrossRefGoogle Scholar
  9. 9.
    Sira-Ramiandrez, H., Castro-Linares, R.: Trajectory tracking for non-holonomic cars: a linear approach to controlled leader-follower formation. In: IEEE Conf. on Decision and Control (CDC) (2010)Google Scholar
  10. 10.
    Xiao, F., Wang, L., Chen, J., Gao, Y.: Finite-time formation control for multi-agent systems. Automatica 45(11), 2605–2611 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    No, T.S., Kim, Y., Tahk, M.-J., Jeon, G.-E.: Cascade-type guidance law design for multiple-uav formation keeping. Aerosp. Sci. Technol. 15(6), 431–439 (2011)CrossRefGoogle Scholar
  12. 12.
    Saffarian, M., Fahimi, F.: Non-iterative nonlinear model predictive approach applied to the control of helicopters group formation. Robot. Auton. Syst. 57(67), 749–757 (2009)CrossRefGoogle Scholar
  13. 13.
    Liu, C., Chen, W.-H., Andrews, J.: Piecewise constant model predictive control for autonomous helicopters. Robot. Auton. Syst. 59(78), 571–579 (2011)CrossRefGoogle Scholar
  14. 14.
    Abdessameud, A., Tayebi, A.: Formation control of vtol unmanned aerial vehicles with communication delays. Automatica 47(11), 2383–2394 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Tanner, H., Christodoulakis, D.: Decentralized cooperative control of heterogeneous vehicle groups. Robot. Auton. Syst. 55(11), 811–823 (2007)CrossRefGoogle Scholar
  16. 16.
    Isermann, R.: Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance. Springer (2006)Google Scholar
  17. 17.
    Freddi, A., Longhi, S., Monteriu, A.: Actuator fault detection system for a mini-quadrotor. In: IEEE International Symposium on Industrial Electronics (ISIE), pp. 2055–2060. IEEE (2010)Google Scholar
  18. 18.
    Heredia, G., Ollero, A., Bejar, M., Mahtani, R.: Sensor and actuator fault detection in small autonomous helicopters. Mechatronics 18(2), 90–99 (2008)CrossRefGoogle Scholar
  19. 19.
    Ranjbaran, M., Khorasani, K.: Fault recovery of an under-actuated quadrotor aerial vehicle. In: 49th IEEE Conference on Decision and Control (CDC), pp. 4385–4392. IEEE (2010)Google Scholar
  20. 20.
    Ranjbaran, M., Khorasani, K.: Generalized fault recovery of an under-actuated quadrotor aerial vehicle. In: American Control Conference (ACC), pp. 2515–2520. IEEE (2012)Google Scholar
  21. 21.
    Mead, R., Long, R., Weinberg, J.B.: Fault-tolerant formations of mobile robots. In: IEEE/RSJ IROS, pp. 4805–4810. IEEE (2009)Google Scholar
  22. 22.
    Chamseddine, A., Zhang, Y., Rabbath, C.A.: Trajectory planning and re-planning for fault tolerant formation flight control of quadrotor unmanned aerial vehicles. In: American Control Conference (ACC), pp. 3291–3296. IEEE (2012)Google Scholar
  23. 23.
    Heredia, G., Caballero, F., Maza, I., Merino, L., Viguria, A., Ollero, A.: Multi-uav cooperative fault detection employing vision based relative position estimation. In: Proceedings of the 17th IFAC World Congress, pp. 12 093–12 098 (2008)Google Scholar
  24. 24.
    Heredia, G., Caballero, F., Maza, I., Merino, L., Viguria, A., Ollero, A.: Multi-unmanned aerial vehicle (UAV) cooperative fault detection employing differential global positioning (DGPS), inertial and vision sensors. Sensors 9(9), 7566–7579 (2009)CrossRefGoogle Scholar
  25. 25.
    Ismail, A.R., Timmis, J.: Aggregation of swarms for fault tolerance in swarm robotics using an immuno-engineering approach. In: UK Workshop on Computational Intelligence (2009)Google Scholar
  26. 26.
    Christensen, A.L., O’Grady, R., Dorigo, M.: From fireflies to fault-tolerant swarms of robots. IEEE Trans. Evol. Comput. 13(4), 754–766 (2009)CrossRefGoogle Scholar
  27. 27.
    Barambones, O., Etxebarria, V.: Robust adaptive control for robot manipulators with unmodelled dynamics. Cybern. Syst. 31(1), 67–86 (2000)CrossRefzbMATHGoogle Scholar
  28. 28.
    Alamir, M.: Stabilization of Nonlinear Systems Using Receding-Horizon Control Schemes. Ser. Lecture Notes in Control and Information Sciences, vol. 339. Springer, Berlin/Heidelberg (2006)zbMATHGoogle Scholar
  29. 29.
    Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: stability and optimality. Automatica 36(6), 789–814 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Boscariol, P., Gasparetto, A., Zanotto, V.: Model predictive control of a flexible links mechanism. J. Intell. Robot. Syst. 58(2), 125–147 (2010)CrossRefzbMATHGoogle Scholar
  31. 31.
    Chao, Z., Zhou, S.-L., Ming, L., Zhang, W.-G.: Uav formation flight based on nonlinear model predictive control. Math. Probl. Eng. 2012(1), 1–16 (2012)CrossRefGoogle Scholar
  32. 32.
    Defoort, M.: Distributed receding horizon planning for multi-robot systems. In: IEEE International Conference on Control Applications (CCA), pp. 1263–1268 (2010)Google Scholar
  33. 33.
    Zhang, X., Duan, H., Yu, Y.: Receding horizon control for multi-uavs close formation control based on differential evolution. Sci. China Inf. Sci. 53(2), 223–235 (2010)CrossRefGoogle Scholar
  34. 34.
    Saska, M., Krajník, T., Vonásek, V., Vanek, P., Preucil, L.: Navigation, localization and stabilization of formations of unmanned aerial and ground vehicles. In: ICUAS (2013)Google Scholar
  35. 35.
    Krajník, T., Nitsche, M., Pedre, S., Přeučil, L., Mejail, M.: A simple visual navigation system for an UAV. In: International Multi-Conference on Systems, Signals and Devices, p. 34. IEEE, Piscataway (2012)Google Scholar
  36. 36.
    Krajník, T., Vonásek, V., Fišer, D., Faigl, J.: AR-drone as a platform for robotic research and education. In: Research and Education in Robotics: EUROBOT 2011. Springer, Heidelberg (2011)Google Scholar
  37. 37.
    Barfoot, T.D., Clark, C.M.: Motion planning for formations of mobile robots. Robot. Auton. Syst. 46, 65–78 (2004)CrossRefGoogle Scholar
  38. 38.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer (2006)Google Scholar
  39. 39.
    Movie: Movie of hw experiment and simulation presented in this paper. Online: (2013). cit. 2013-2-22

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Martin Saska
    • 1
  • Tomáš Krajník
    • 2
  • Vojtěch Vonásek
    • 1
  • Zdeněk Kasl
    • 1
  • Vojtěch Spurný
    • 1
  • Libor Přeučil
    • 1
  1. 1.Department of Cybernetics, Faculty of Electrical EngineeringCzech Technical University in PraguePrague 6Czech Republic
  2. 2.Lincoln Centre for Autonomous Systems, Faculty of ScienceUniversity of LincolnLincolnUK

Personalised recommendations