Skip to main content

Spline-Based RRT Path Planner for Non-Holonomic Robots

Abstract

Planning in a cluttered environment under differential constraints is a difficult problem because the planner must satisfy the external constraints that arise from obstacles in the environment and the internal constraints due to the kinematic/dynamic limitations of the robot. This paper proposes a novel Spline-based Rapidly-exploring Random Tree (SRRT) algorithm which treats both the external and internal constraints simultaneously and efficiently. The computationally expensive numerical integration of the system dynamics is replaced by an efficient spline curve parameterization. In addition, the SRRT guarantees continuity of curvature along the path satisfying any upper-bounded curvature constraints. This paper presents the underlying theory to the SRRT algorithm and presents simulation and experiment results of a mobile robot efficiently navigating through cluttered environments.

This is a preview of subscription content, access via your institution.

References

  1. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  2. Jacobs, P., Canny J.: Planning smooth paths for mobile robots. In: IEEE Int. Conf. Robotics and Automation, Scottsdale (1989)

  3. Fraichard, T.: Smooth trajectory planning for a car in a structured world. In: IEEE Int. Conf. Robotics and Automation, Sacramento (1991)

  4. Anderson, E., Beard, R., McLain, T.: Real-time dynamic trajectory smoothing for unmanned air vehicles. IEEE Trans. Control. Syst. Technol. 13(3), 471–477 (2005)

    Article  Google Scholar 

  5. Fraichard, T., Scheuer, A.: From Reeds and Shepp’s to continuous-curvature paths. IEEE Trans. Robot. 20(6), 1025–1035 (2004)

    Article  Google Scholar 

  6. Kito, T., Ota, J., Katsuiu, R., Mizuta, T., Arai, T., Ueyama, T., Nishiyama, T.: Smooth path planning by using visibility graph-like method. In: IEEE International Conference on Robotics and Automation, Taipei, Taiwan (2003)

  7. Connors, J., Elkaim, G.: Analysis of a spline based, obstacle avoiding path planning algorithm. In: IEEE 65th Vehicular Technology Conference (2007)

  8. Howard, T., Green, C., Kelly, A., Ferguson, D.: State space sampling of feasible motions for high performance mobile robot navigation in complex environments. J. Field Robot. 25(6–7), 325–345 (2008)

    Article  Google Scholar 

  9. Thrun, S., Ragusa, C., Ray, D., et al.: Stanley: the robot that won the DARPA grand challenge. J. Field Robot. 23(9), 661–692 (2006)

    Article  Google Scholar 

  10. Urmson, C., et al.: Autonomous driving in urban environments: boss and the urban challenge. J. Field Robot. 25(8), 425–466 (2008)

    Article  Google Scholar 

  11. Hundelshausen, F., et al.: Driving with tentacles: integral structures for sensing and motion. J. Field Robot. 25(9), 640–673 (2008)

    Article  Google Scholar 

  12. Scherer, S., Singh, S., Chamberlain, L., Elgersma, M.: Flying fast and low among obstacles: methodology and experiments. Int. J. Robot. Res. 27(5), 549–574 (2008)

    Article  Google Scholar 

  13. Likhachev, M., Ferguson, D.: Planning long dynamically feasible maneuvers for autonomous vehicles. Int. J. Robot. Res. 28(8), 933–945 (2009)

    Article  Google Scholar 

  14. Barraquand, J., Latombe, J.C.: Nonholonomic multibody mobile robots: controllability and motion planning in the presence of obstacles. Algorithmica 10(2–4), 121–155 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Howard, T., Kelly, A.: Optimal rough terrain trajectory generation for wheeled mobile robots. Int. J. Robot. Res. 26(2), 141–166 (2007)

    Article  Google Scholar 

  16. LaValle, S.M., Kuffner, J.: Randomized kinodynamic planning. Int. J. Robot. Res. 20(50), 378–400 (2001)

    Article  Google Scholar 

  17. LaValle, S.M.: Rapidly-Exploring Random Trees: A New Tool for Path Planning. TR 98-11, Computer Science Dept., Iowa State University (1998)

  18. Kuffner, J., LaValle, S.: RRT-connect: an efficient approach to single-query path planning. In: IEEE International Conference on Robotics and Automation, San Francisco (2000)

  19. Yershova, A., Jaillet, L., Simeon, T., LaValle, S.: Dynamic-domain rrts: efficient exploration by controlling the sampling domain. In: IEEE International Conference on Robotics and Automation, Barcelona, Spain (2005)

  20. Burns, B., Brock, O.: Single query motion planning with utilityguided random trees. In: IEEE International Conference on Robotics and Automation, Rome, Italy (2007)

  21. Fulgenzi, C., Tay, C., Spalanzani, A., Laugier C.: Probabilistic navigation in dynamic environment using rapidly-exploring random trees and Gaussian processes. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France (2008)

  22. Yang, K., Gan, S., Sukkarieh, S.: A Gaussian process-based RRT planner for the exploration of an unknown and cluttered environment with a UAV. Adv. Robot. 27(6), 431–443 (2013)

    Article  Google Scholar 

  23. Aoude, G., Luders, B., Joseph, J., Roy, N., How, J.: Probabilistically safe motion planning to avoid dynamic obstacles with uncertain motion patterns. Auton. Robot. 35(1), 51–76 (2013)

    Article  Google Scholar 

  24. Frazzoli, E., Dahleh, M., Feron, E.: Real-time motion planning for agile autonomous vehicles. J. Guid. Control. Dyn. 25(1), 116–129 (2002)

    Article  Google Scholar 

  25. Ferguson, D., Stentz, A.: Anytime RRTs. In: International Conference on Intelligent Robots and Systems. Beijing, China (2006)

  26. Yang, K.: Anytime synchronized-biased-greedy rapidly-exploring random tree path planning in two dimensional complex environments. Int. J. Control. Autom. Syst. 9(4), 750–758 (2011)

    Article  Google Scholar 

  27. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30(7), 846–894 (2011)

    Article  Google Scholar 

  28. Perez, A., Platt, R., Konidaris, G., Kaelbling, L., Lozano-Perez, T.: LQR-RRT*: optimal sampling-based motion planning with automatically derived extension heuristics. In: IEEE International Conference on Robotics and Automation, St. Paul (2012)

  29. Jaillet, L., Porta, J.: Asymptotically-optimal path planning on manifolds. In: Robotics: Science and Systems, Sydney, Australia (2012)

  30. Choudhury, S., Scherer, S., Singh, S.: RRT*-AR: sampling-based alternate routes planning with applications to autonomous emergency landing of a helicopter. In: IEEE International Conference on Robotics and Automation, Karlsruhe, Germany (2013)

  31. Chakraborty, N., Akella, S., Trinkle, J.: Complementarity- based dynamic simulation for kinodynamic motion planning. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, USA (2009)

  32. Kanayama, Y., Hartman, B.: Smooth local-path planning for autonomous vehicles. Int. J. Robot. Res. 16(3), 263–283 (1997)

    Article  Google Scholar 

  33. Yang, K., Sukkarieh, S.: 3D smooth path planning for a UAV in cluttered natural environments. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France (2008)

  34. Yang, K., Sukkarieh, S.: An analytical continuous-curvature path-smoothing algorithm. IEEE Trans. Robot. 26(3), 561–568 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwangjin Yang.

Additional information

This work was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012R1A1A4A01005563).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yang, K., Moon, S., Yoo, S. et al. Spline-Based RRT Path Planner for Non-Holonomic Robots. J Intell Robot Syst 73, 763–782 (2014). https://doi.org/10.1007/s10846-013-9963-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-9963-y

Keywords

  • Differential constraints
  • Rapidly-exploring random tree
  • Spline curve parameterization
  • Mobile robot