Monocular Visual-Inertial SLAM-Based Collision Avoidance Strategy for Fail-Safe UAV Using Fuzzy Logic Controllers

Comparison of Two Cross-Entropy Optimization Approaches

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


In this paper, we developed a novel Cross-Entropy Optimization (CEO)-based Fuzzy Logic Controller (FLC) for Fail-Safe UAV to expand its collision avoidance capabilities in the GPS-denied environments using Monocular Visual-Inertial SLAM-based strategy. The function of this FLC aims to control the heading of Fail-Safe UAV to avoid the obstacle, e.g. wall, bridge, tree line et al, using its real-time and accurate localization information. In the Matlab Simulink-based training framework, the Scaling Factor (SF) is adjusted according to the collision avoidance task firstly, and then the Membership Function (MF) is tuned based on the optimized Scaling Factor to further improve the control performances. After obtained the optimal SF and MF, 64 % of rules has been reduced (from 125 rules to 45 rules), and a large number of real see-and-avoid tests with a quadcopter have done. The simulation and experiment results show that this new proposed FLC can precisely navigates the Fail-Safe UAV to avoid the obstacle, obtaining better performances compared to only SF optimization-based FLC. To our best knowledge, this is the first work to present the optimized FLC using Cross-Entropy method in both SF and MF optimization, and apply it in the UAV.

This is a preview of subscription content, access via your institution.


  1. 1.

    Abdelkrim, N., Aouf, N., Tsourdos, A., White, B.: Robust nonlinear filtering for ins/gps uav localization. In: 2008 16th Mediterranean Conference on Control and Automation, pp. 695–702 (2008)

  2. 2.

    Albaker, B.M., Rahim, N.: A survey of collision avoidance approaches for unmanned aerial vehicles. In: 2009 International Conference for Technical Postgraduates (TECHPOS), pp. 1–7 (2009)

  3. 3.

    Angelov, P.: Sense and Avoid in UAS: Research and Applications. Wiley, New York (2012)

    Book  Google Scholar 

  4. 4.

    Babaei, A.R., Mortazavi, M., Moradi, M.H.: Classic and fuzzy-genetic autopilot design for unmanned aerial vehicle. Appl. Soft Comput. 11, 365–372 (2011)

    Article  Google Scholar 

  5. 5.

    Bonak, M., Matko, D., Blai, S.: Quadrocopter hovering using position-estimation information from inertial sensors and a high-delay video system. J. Intell. Robot. Syst. 67(1), 43–60 (2012)

    Article  Google Scholar 

  6. 6.

    Caballero, F., Merino, L., Ferruz, J., Ollero, A.: Vision-based odometry and slam for medium and high altitude flying uavs. J. Intell. Robot. Syst. 54(1–3), 137–161 (2009)

    Article  Google Scholar 

  7. 7.

    Coza, C., Macnab, C.J.B.: A new robust adaptive-fuzzy control method applied to quadrotor helicopter stabilization. In: Fuzzy Information Processing Society, 2006. NAFIPS 2006. Annual Meeting of the North American, pp. 454–458 (2006)

  8. 8.

    Doitsidis, L., Valavanis, K., Tsourveloudis, N., Kontitsis, M.: A framework for fuzzy logic based uav navigation and control. In: 2004 IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04, vol. 4, pp. 4041–4046 (2004)

  9. 9.

    Dryanovski, I., Valenti, R., Xiao, J.: An open-source navigation system for micro aerial vehicles. Auton. Robot. 34(3), 177–188 (2013)

    Article  Google Scholar 

  10. 10.

    Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part i. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006)

    Article  Google Scholar 

  11. 11.

    Haber, R.E., del Toro, R.M., Gajate, A.: Optimal fuzzy control system using the Cross-Entropy method. A case study of a drilling process. Inf. Sci. 180, 2777–279 (2010)

    Google Scholar 

  12. 12.

    Engel, J., Sturm, J., Cremers, D.: Accurate figure flying with a quadrocopter using onboard visual and inertial sensing. In: Proc. of the Workshop on Visual Control of Mobile Robots (ViCoMoR) at the IEEE/RJS International Conference on Intelligent Robot Systems (IROS) (2012)

  13. 13.

    Eresen, A., Imamoglu, N., Efe, M.O.: Autonomous quadrotor flight with vision-based obstacle avoidance in virtual environment. Expert Syst. Appl. 39(1), 894–905 (2012)

    Article  Google Scholar 

  14. 14.

    He, Z., Iyer, R., Chandler, P.: Vision-based uav flight control and obstacle avoidance. In: American Control Conference, pp. 14–16 (2006)

  15. 15.

    Hrabar, S.: Reactive obstacle avoidance for rotorcraft uavs. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4967–4974 (2011)

  16. 16.

    Kadmiry, B., Driankov, D.: A fuzzy gain-scheduler for the attitude control of an unmanned helicopter. IEEE Trans. Fuzzy Syst. 12(4), 502–515 (2004)

    Article  Google Scholar 

  17. 17.

    Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: Proc. Sixth IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR’07) (2007)

  18. 18.

    Zemalache, K.M., Maaref, H.: Controlling a drone: comparison between a based model method and a fuzzy inference system. Appl. Soft Comput. 9, 404–418 (2009)

    Article  Google Scholar 

  19. 19.

    Kurnaz, S., Cetin, O., Kaynak, O.: Fuzzy logic based approach to design of flight control and navigation tasks for autonomous unmanned aerial vehicles. J. Intell. Robot. Syst. 54(1–3), 229–244 (2009)

    Article  Google Scholar 

  20. 20.

    Kurnaz, S., Cetin, O., Kaynak, O.: Adaptive neuro-fuzzy inference system based autonomous flight control of unmanned air vehicles. Expert Syst. Appl. 37, 1229–1234 (2010)

    Article  Google Scholar 

  21. 21.

    Lenz, I., Gemici, M., Saxena, A.: Low-power parallel algorithms for single image based obstacle avoidance in aerial robots. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 772–779 (2012)

  22. 22.

    Limnaios, G., Tsourveloudis, N.: Fuzzy logic controller for a mini coaxial indoorhelicopter. J. Intell. Robot. Syst. 65(1–4), 187–201 (2012)

    Article  Google Scholar 

  23. 23.

    Mejias, L., Campoy, I.: Omnidirectional bearing-only see-and-avoid for small aerial robots. In: 2011 5th International Conference on Automation, Robotics and Applications (ICARA), pp. 23–28 (2011)

  24. 24.

    Mellinger, D., Michael, N., Kumar, V.: Trajectory generation and control for precise aggressive maneuvers with quadrotors. Int. J. Robot. Res. 31(5), 664–674 (2012)

    Article  Google Scholar 

  25. 25.

    Merino, L., Caballero, F., Martnez-de Dios, J., Maza, I., Ollero, A.: An unmanned aircraft system for automatic forest fire monitoring and measurement. J. Intell. Robot. Syst. 65(1–4), 533–548 (2012)

    Article  Google Scholar 

  26. 26.

    Merz, T., Kendoul, F.: Beyond visual range obstacle avoidance and infrastructure inspection by an autonomous helicopter. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4953–4960 (2011)

  27. 27.

    Michael, N., Mellinger, D., Lindsey, Q., Kumar, V.: The grasp multiple micro-uav testbed. IEEE Robot. Autom. Mag. 17(3), 56–65 (2010)

    Article  Google Scholar 

  28. 28.

    Murphy, R., Steimle, E., Hall, M., Lindemuth, M., Trejo, D., Hurlebaus, S., Medina-Cetina, Z., Slocum, D.: Robot-assisted bridge inspection. J. Intell. Robot. Syst. 64(1), 77–95 (2011)

    Article  Google Scholar 

  29. 29.

    Nemra, A., Aouf, N.: Robust airborne 3d visual simultaneous localization and mapping with observability and consistency analysis. J. Intell. Robot. Syst. 55(4–5), 345–376 (2009)

    Article  MATH  Google Scholar 

  30. 30.

    Novak, D., Cermak, P.: Advantages of using multi-agent principles in FAIL-SAFE uav system design. In: 2011 16th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 162–167 (2011)

  31. 31.

    Nutzi, G., Weiss, S., Scaramuzza, D., Siegwart, R.: Fusion of imu and vision for absolute scale estimation in monocular slam. J. Intell. Robot. Syst. 61(1–4), 287–299 (2011)

    Article  Google Scholar 

  32. 32.

    Olivares-Mendez, M., Campoy, P., Martinez, C., Mondragon, I.: A pan-tilt camera fuzzy vision controller on an unmanned aerial vehicle. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009. IROS 2009, pp. 2879–2884 (2009)

  33. 33.

    Olivares-Mendez, M., Mejias, L., Campoy, P., Mellado-Bataller, I.: Cross-Entropy optimization for scaling factors of a fuzzy controller: a see-and-avoid approach for unmanned aerial systems. J. Intell. Robot. Syst. 69, 189–205 (2013)

    Article  Google Scholar 

  34. 34.

    Olivares-Mendez, M., Mondragon, I., Campoy, P., Martinez, C.: Fuzzy controller for uav-landing task using 3d-position visual estimation. In: 2010 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 1–8 (2010)

  35. 35.

    Olivares-Mendez, M.A., Mejias, L., Campoy, P., Mellado-Bataller, I., Mondragon, I.: Uas see-and-avoid using two different approaches of fuzzy control. In: 2012 International Conference on Unmanned Aircraft Systems (ICUAS’12) (2012)

  36. 36.

    Pratt, K.S., Murphy, R., Stover, S., Griffin, C.: CONOPS and autonomy recommendations for vtol small unmanned aerial system based on hurricane katrina operations. J. Field Robot. 26(8), 636–650 (2009)

    Article  Google Scholar 

  37. 37.

    Prazenica, R., Kurdila, A., Sharpley, R., Evers, J.: Vision-based geometry estimation and receding horizon path planning for uavs operating in urban environments. In: American Control Conference, 2006, pp. 2874–2879 (2006)

  38. 38.

    Recchia, G., Fasano, G., Accardo, D., Moccia, A., Paparone, L.: An optical flow based electro-optical see-and-avoid system for uavs. In: Aerospace Conference, 2007 IEEE, pp. 1–9 (2007)

  39. 39.

    Ritz, R., Mueller, M., D’Andrea, R.: Cooperative quadrocopter ball throwing and catching. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4972–4978. IEEE (2012)

  40. 40.

    Rubinstein, R.Y., Kroese, D.P.: The Cross-Entropy Method: A Unified Approach to Combinational Optimization, Monte-Carlo Simulation, and Machine Learning. Springer-Berlin, Germany (2004)

    Book  Google Scholar 

  41. 41.

    Santos, M., Lopez, V., Morata, F.: Intelligent fuzzy controller of a quadrotor. In: 2010 International Conference on Intelligent Systems and Knowledge Engineering (ISKE), pp. 141–146 (2010)

  42. 42.

    Scaramuzza, D., Fraundorfer, F.: Visual odometry [tutorial]. IEEE Robot. Autom. Mag. 18(4), 80–92 (2011)

    Article  Google Scholar 

  43. 43.

    Sturm, J., Bylow, E., Kahl, F., Cremers, D.: Dense tracking and mapping with a quadrocopter. In: Unmanned Aerial Vehicle in Geomatics (UAV-g), Tokyo, Japan (2013)

  44. 44.

    Weiss, S., Scaramuzza, D., Siegwart, R.: Monocular-slam-based navigation for autonomous micro helicopters in gps-denied environments. J. Field Robot. 28(6), 854–874 (2011)

    Article  Google Scholar 

  45. 45.

    Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. 3(1), 28–44 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  46. 46.

    Botev, Z., Kroese, D.P.: Global likelihood optimization via the Cross-Entropy method with an application to mixture models. In: Proceedings of the 36th Conference on Winter Simulation (WSC2004), pp. 529–535 (2004)

  47. 47.

    Zheng, L.: A practical guide to tune of proportional and integral (PI) like fuzzy controllers. In: IEEE International Conference on Fuzzy Systems, 1992, pp. 633–640 (1992)

  48. 48.

    Zufferey, J.C., Floreano, D.: Toward 30-gram autonomous indoor aircraft: vision-based obstacle avoidance and altitude control. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005. ICRA 2005, pp. 2594–2599 (2005)

Download references

Author information



Corresponding author

Correspondence to Changhong Fu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fu, C., Olivares-Mendez, M.A., Suarez-Fernandez, R. et al. Monocular Visual-Inertial SLAM-Based Collision Avoidance Strategy for Fail-Safe UAV Using Fuzzy Logic Controllers. J Intell Robot Syst 73, 513–533 (2014).

Download citation


  • Monocular visual-inertial SLAM
  • Collision avoidance
  • Fuzzy Logic Controller (FLC)
  • Cross Entropy Optimization (CEO)
  • Unmanned Aerial Vehicle (UAV)