Skip to main content
Log in

Robust Tracking Control of a Quadrotor Helicopter

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, a robust tracking control method for automatic take-off, trajectory tracking, and landing of a quadrotor helicopter is presented. The designed controller includes two parts: a position controller and an attitude controller. The position controller is designed by the static feedback control method to track the desired trajectory of the altitude and produce the desired angles for pitch and roll angles. By combining the proportional-derivative (PD) control method and the robust compensating technique, the attitude controller is designed to track the desired pitch and roll angles and stabilize the yaw angle. It is proven that the attitude tracking error of each channel can converge to the given neighborhood of the origin ultimately. Experimental results demonstrate the effectiveness of the designed control method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Alexis, K., Nikolakopoulos, G., Tzes, A.: Switching model predictive attitude control for a quadrotor helicopter subject to atmospheric disturbances. Control Eng. Pract. 19(10), 1195–1207 (2011)

    Article  Google Scholar 

  2. Altug, E., Ostrowski, J.P., Taylor, C.J.: Control of a quadrotor helicopter using dual camera visual feedback. Int. J. Robot. Res. 24(5), 329–341 (2005)

    Article  Google Scholar 

  3. Castillo, P., Dzul, A., Lozano, R.: Real-time stabilization and tracking of a four-rotor mini rotorcraft. IEEE Trans. Control Syst. Tech. 12(4), 510–516 (2004)

    Article  MathSciNet  Google Scholar 

  4. Marconi, l., Naldi, R.: Robust full degree-of-freedom tracking control of a helicopter. Automatica 43(11), 1909–1920 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Xu, R., Ozguner, U.: Sliding mode control of a class of underactuated systems. Automatica 44(1), 233–241 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Zuo, Z.: Trajectory tracking control design with command-filtered compensation for a quadrotor. IET Control Theory Applic. 4(11), 2343–2355 (2010)

    Article  Google Scholar 

  7. Tayebi, A., McGilvray, S.: Attitude stabilization of a VTOL quadrotor aircraft. IEEE Trans. Control Syst. Tech. 14(3), 562–571 (2006)

    Article  Google Scholar 

  8. Raffo, G.V., Ortega, M.G., Rubio, F.R.: An integral predictive/nonlinear H  ∞  control structure for a quadrotor helicopter. Automatica 46(1), 29–39 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Das, A., Subbarao, K., Lewis, F.: Dynamic inversion with zero-dynamics stabilization for quadrotor control. IET Control Theory Applic. 3(3), 303–314 (2009)

    Article  MathSciNet  Google Scholar 

  10. Bertrand, S., Guenard, N., Hamel, T., Piet-Lahanier, H., Eck, L.: A hierarchical controller for miniature VTOL UAVs: design and stability analysis using singular perturbation theory. Control Eng. Pract. 19(10), 1099–1108 (2011)

    Article  Google Scholar 

  11. Hoffmann, G.M., Huang, H., Waslander, S.L., Tomlin, C.J.: Precision flight control for a multi-vehicle quadrotor helicopter testbed. Control Eng. Pract. 19(9), 1023–1036 (2011)

    Article  Google Scholar 

  12. Vilchis, J.C.A., Brogliato, B., Dzul, A., Lozano, R.: Nonlinear modelling and control of helicopters. Automatica 45(10), 1583–1596 (2003)

    Article  Google Scholar 

  13. Peng, K., Cai, G., Chen, B.M., Dong, M., Lum, K.Y., Lee, T.H.: Design and implementation of an autonomous flight control law for a UAV helicopter. Automatica 39(9), 2333–2338 (2009)

    Article  MathSciNet  Google Scholar 

  14. Yu, Y., Zhong, Y.: Robust attitude control of a 3DOF helicopter with multi-operation points. J. Syst. Sci. Complex. 22(2), 207–219 (2009)

    Article  MathSciNet  Google Scholar 

  15. Zheng, B., Zhong, Y.: Robust attitude regulation of a 3-DOF helicopter benckmark: theory and experiments. IEEE Trans. Ind. Electron. 58(2), 660–670 (2011)

    Article  Google Scholar 

  16. Liu, H., Lu, G., Zhong, Y.: Robust LQR attitude control of a 3-DOF lab helicopter for aggressive maneuvers. IEEE Trans. Ind. Electron. (2013, Available through early access)

  17. Raptis, I.A., Valavanis, K.P., Moreno, W.A.: A novel nonlinear backstepping controller design for helicopters using the rotation matrix. IEEE Trans. Control Syst. Tech. 19(2), 465–473 (2011)

    Article  Google Scholar 

  18. Sira-Ramirez, H., Castro-Linarez, R., Liceaga-Castro, E.: A Liouvillian systems approach for the trajectory planning-based control of helicopter models. Int. J. Robust Nonlinear Control 10(4), 301–320 (2000)

    Article  MATH  Google Scholar 

  19. Zhong, Y.: Robust output tracking control of SISO plants with multiple operating points and with parametric and unstructured uncertainties. Int. J. Control 75(4), 219–241 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Bai, Y., Lu, G. et al. Robust Tracking Control of a Quadrotor Helicopter. J Intell Robot Syst 75, 595–608 (2014). https://doi.org/10.1007/s10846-013-9838-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-9838-2

Keywords

Navigation