Skip to main content
Log in

Trajectory Planning and Control for Airport Snow Sweeping by Autonomous Formations of Ploughs

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript


This article presents a control approach that enables an autonomous operation of fleets of unmanned snow ploughs at large airports. The proposed method is suited for the special demands of tasks of the airport snow shovelling. The robots have to keep a compact formation of variable shapes during moving into the locations of their deployment and for the autonomous sweeping of runways surfaces. These tasks are solved in two independent modes of the airport snow shoveling. The moving and the sweeping modes provide a full-scale solution of the trajectory planning and coordination of vehicles applicable in the specific airport environment. Nevertheless, they are suited for any multi-robot application that requires complex manoeuvres of compact formations in dynamic environment. The approach encapsulates the dynamic trajectory planning and the control of the entire formation into one merged optimization process via a novel Model Predictive Control (MPC) based methodology. The obtained solution of the optimization includes a complete plan for the formation. It respects the overall structure of the workspace and actual control inputs for each vehicle to ensure collision avoidance and coordination of team members. The presented method enables to autonomously design arbitrary manoeuvres, like reverse driving or turning of compact formations of car-like robots, which frequently occur in the airport sweeping application. Examples of such scenarios verifying the performance of the approach are shown in simulations and hardware experiments in this article. Furthermore, the requirements that guarantee a convergence of the group to a desired state are formulated for the formation acting in the sweeping and moving modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Abdessameud, A., Tayebi, A.: Formation control of vtol unmanned aerial vehicles with communication delays. Automatica 47(11), 2383–2394 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alamir, M.: Stabilization of Nonlinear Systems Using Receding-Horizon Control Schemes. Lecture Notes in Control and Information Sciences, vol. 339. Springer, Berlin/Heidelberg, Germany (2006)

    MATH  Google Scholar 

  3. Athans, M., Falb, P.L.: Optimal Control: An Introduction to the Theory and Its Applications, 1st edn. McGraw-Hill, Sydney (1963)

    Google Scholar 

  4. Barambones, O., Etxebarria, V.: Robust adaptive control for robot manipulators with unmodelled dynamics. Cybern. Syst. 31(1), 67–86 (2000)

    Article  MATH  Google Scholar 

  5. Barfoot, T.D., Clark, C.M.: Motion planning for formations of mobile robots. Robot. Auton. Syst. 46, 65–78 (2004)

    Article  Google Scholar 

  6. Beard, R., Lawton, J., Hadaegh, F.: A coordination architecture for spacecraft formation control. IEEE Trans. Control Syst. Technol. 9(6), 777–790 (2001)

    Article  Google Scholar 

  7. Boscariol, P., Gasparetto, A., Zanotto, V.: Model predictive control of a flexible links mechanism. J. Intell. Robot. Syst. 58(2), 125–147 (2010)

    Article  MATH  Google Scholar 

  8. Chao, Z., Zhou, S.L., Ming, L., Zhang, W.G.: Uav formation flight based on nonlinear model predictive control. Math. Probl. Eng. 2012(1), 1–16 (2012)

    Article  Google Scholar 

  9. Chen, J., Sun, D., Yang, J., Chen, H.: Leader-follower formation control of multiple non-holonomic mobile robots incorporating a receding-horizon scheme. Int. J. Robot. Res. 29, 727–747 (2010)

    Article  Google Scholar 

  10. Chiddarwar, S.S., Babu, N.R.: Conflict free coordinated path planning for multiple robots using a dynamic path modification sequence. Robot. Auton. Syst. 59(78), 508–518 (2011)

    Article  Google Scholar 

  11. Cui, R., Ge, S.S., How, B.V.E., Choo, Y.S.: Leaderfollower formation control of underactuated autonomous underwater vehicles. Ocean Eng. 37(17–18), 1491–1502 (2010)

    Article  Google Scholar 

  12. Cui, R., Gao, B., Guo, J.: Pareto-optimal coordination of multiple robots with safety guarantees. Auton. Robot. 32, 189–205 (2012)

    Article  Google Scholar 

  13. Das, A., Fierro, R., Kumar, V., Ostrowski, J., Spletzer, J., Taylor, C.: A vision-based formation control framework. IEEE Trans. Robot. Autom. 18(5), 813–825 (2003)

    Article  Google Scholar 

  14. Desai, J., Ostrowski, J., Kumar, V.: Modeling and control of formations of nonholonomic mobile robots. IEEE Trans. Robot. Autom. 17(6), 905–908 (2001)

    Article  Google Scholar 

  15. Do, K.D., Lau, M.W.: Practical formation control of multiple unicycle-type mobile robots with limited sensing ranges. J. Intell. Robot. Syst. 64(2), 245–275 (2011)

    Article  MATH  Google Scholar 

  16. Dong, W.: Robust formation control of multiple wheeled mobile robots. J. Intell. Robot. Syst. 62(3–4), 547–565 (2011)

    Article  MATH  Google Scholar 

  17. Dunbar, W., Murray, R.: Distributed receding horizon control for multi-vehicle formation stabilization. Automatica 42(4), 549–558 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Franco, E., Magni, L., Parisini, T., Polycarpou, M., Raimondo, D.: Cooperative constrained control of distributed agents with nonlinear dynamics and delayed information exchange: a stabilizing receding-horizon approach. IEEE Trans. Autom. Contr. 53(1), 324–338 (2008)

    Article  MathSciNet  Google Scholar 

  19. Fredslund, J., Mataric, M.: A general algorithm for robot formations using local sensing and minimal communication. IEEE Trans. Robot. Autom. 18(5), 837–846 (2002) (Special issue on Adv. Multi-Robot Syst.)

    Article  Google Scholar 

  20. Ghommam, J., Mehrjerdi, H., Saad, M., Mnif, F.: Formation path following control of unicycle-type mobile robots. Robot. Auton. Syst. 58(5), 727–736 (2010)

    Article  Google Scholar 

  21. Hengster-Movrić, K., Bogdan, S., Draganjac, I.: Multi-agent formation control based on bell-shaped potential functions. J. Intell. Robot. Syst. 58(2), 165–189 (2010)

    Article  MATH  Google Scholar 

  22. Khalil, H.: Nonlinear Systems, 3rd edn. Prentice Hall, Michigan State University, MI (2001)

  23. Krajnik, T., Preucil, L.: A simple visual navigation system with convergence property. In: European Robotics Symposium (2008)

  24. Kurabayashi, D., Ota, J., Arai, T., Ichikawa, S., Koga, S,, Asama, H., Endo, I.: Cooperative sweeping by multiple mobile robots with relocating portable obstacles. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Osaka, Japan, pp. 1472–1477 (1996)

  25. Langer, D., Rosenblatt, J., Hebert, M.: A behavior-based system for off-road navigation. IEEE Trans. Robot. Autom. 10(6), 776–783 (1994)

    Article  Google Scholar 

  26. Lawton, J., Beard, R., Young, B.: A decentralized approach to formation maneuvers. IEEE Trans. Robot. Autom. 19(6), 933–941 (2003)

    Article  Google Scholar 

  27. Li, Z., Chen, W.: Adaptive neural-fuzzy control of uncertain constrained multiple coordinated nonholonomic mobile manipulators. Eng. Appl. Artif. Intell. 21(7), 985–1000 (2008)

    Article  Google Scholar 

  28. Li, Z., Li, J., Kang, Y.: Adaptive robust coordinated control of multiple mobile manipulators interacting with rigid environments. Automatica 46(12), 2028–2034 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Luo, C., Yang, X., Stacey, D.: Real-time path planning with deadlock avoidance of multiple cleaning robots. In: Proc. of the IEEE International Conference on Robotics and Automation, Taipei, Taiwan (2003)

  30. Mayne, D.Q,, Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: stability and optimality. Automatica 36(6), 789–814 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Min, H.J., Papanikolopoulos, N.: Robot formations using a single camera and entropy-based segmentation. J. Intell. Robot. Syst. 68(1), 21–41 (2012)

    Article  MATH  Google Scholar 

  32. Min, T., Yin, H.: A decentralized approach for cooperative sweeping by multiple mobile robots. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Victoria, Canada (1998)

  33. Movies: Movies of experiments presented in this article (online). (2012). Accessed 20 Jan 2012

  34. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer (2006)

  35. Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Eng. Pract. 11(7), 733–764 (2003)

    Article  Google Scholar 

  36. Ren, W.: Decentralization of virtual structures in formation control of multiple vehicle systems via consensus strategies. Eur. J. Control 14, 93–103 (2008)

    Article  MathSciNet  Google Scholar 

  37. Ren, W., Beard, R.: Virtual structure based spacecraft formation control with formation feedback. In: Proc. of AIAA Guidance, Navigation, and Control Conference (2002)

  38. Saska, M., Hess, M., Schilling, K.: Route scheduling approach for airport snow shoveling using formations of autonomous ploughs. In: Proc. of 10th International Conference on Control, Automation, Robotics and Vision (2008)

  39. Saska, M., Mejia, J.S., Stipanovic, D.M., Schilling, K.: Control and navigation of formations of car-like robots on a receding horizon. In: Proc of 3rd IEEE Multi-Conference on Systems and Control (2009)

  40. Saska, M., Vonasek, V., Preucil, L.: Roads sweeping by unmanned multi-vehicle formations. In: IEEE International Conference on Robotics and Automation (ICRA) (2011)

  41. Shin, J., Kim, H.: Nonlinear model predictive formation flight. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 39(5), 1116–1125 (2009)

    Article  Google Scholar 

  42. Wagner, I., Bruckstein, A.: Cooperative cleaners: a case of distributed ant-robotics. In: Paulraj, A., Roychowdhury, V., Schaper, C.D. (eds.) Communications, Computation, Control, and Signal Processing: A Tribute to Thomas Kailath, pp. 289–308. Kluwer Academic Publishers (1997)

  43. Xiao, F., Wang, L., Chen, J., Gao, Y.: Finite-time formation control for multi-agent systems. Automatica 45(11), 2605–2611 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang, X., Duan, H., Yu, Y.: Receding horizon control for multi-uavs close formation control based on differential evolution. Sci. China Inf. Sci. 53, 223–235 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Martin Saska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saska, M., Vonásek, V. & Přeučil, L. Trajectory Planning and Control for Airport Snow Sweeping by Autonomous Formations of Ploughs. J Intell Robot Syst 72, 239–261 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: