Journal of Intelligent & Robotic Systems

, Volume 72, Issue 2, pp 239–261 | Cite as

Trajectory Planning and Control for Airport Snow Sweeping by Autonomous Formations of Ploughs

  • Martin SaskaEmail author
  • Vojtěch Vonásek
  • Libor Přeučil


This article presents a control approach that enables an autonomous operation of fleets of unmanned snow ploughs at large airports. The proposed method is suited for the special demands of tasks of the airport snow shovelling. The robots have to keep a compact formation of variable shapes during moving into the locations of their deployment and for the autonomous sweeping of runways surfaces. These tasks are solved in two independent modes of the airport snow shoveling. The moving and the sweeping modes provide a full-scale solution of the trajectory planning and coordination of vehicles applicable in the specific airport environment. Nevertheless, they are suited for any multi-robot application that requires complex manoeuvres of compact formations in dynamic environment. The approach encapsulates the dynamic trajectory planning and the control of the entire formation into one merged optimization process via a novel Model Predictive Control (MPC) based methodology. The obtained solution of the optimization includes a complete plan for the formation. It respects the overall structure of the workspace and actual control inputs for each vehicle to ensure collision avoidance and coordination of team members. The presented method enables to autonomously design arbitrary manoeuvres, like reverse driving or turning of compact formations of car-like robots, which frequently occur in the airport sweeping application. Examples of such scenarios verifying the performance of the approach are shown in simulations and hardware experiments in this article. Furthermore, the requirements that guarantee a convergence of the group to a desired state are formulated for the formation acting in the sweeping and moving modes.


Airport snow shoveling Autonomous ploughs Formation applications Trajectory planning Model predictive control Mobile robotics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdessameud, A., Tayebi, A.: Formation control of vtol unmanned aerial vehicles with communication delays. Automatica 47(11), 2383–2394 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alamir, M.: Stabilization of Nonlinear Systems Using Receding-Horizon Control Schemes. Lecture Notes in Control and Information Sciences, vol. 339. Springer, Berlin/Heidelberg, Germany (2006)zbMATHGoogle Scholar
  3. 3.
    Athans, M., Falb, P.L.: Optimal Control: An Introduction to the Theory and Its Applications, 1st edn. McGraw-Hill, Sydney (1963)Google Scholar
  4. 4.
    Barambones, O., Etxebarria, V.: Robust adaptive control for robot manipulators with unmodelled dynamics. Cybern. Syst. 31(1), 67–86 (2000)CrossRefzbMATHGoogle Scholar
  5. 5.
    Barfoot, T.D., Clark, C.M.: Motion planning for formations of mobile robots. Robot. Auton. Syst. 46, 65–78 (2004)CrossRefGoogle Scholar
  6. 6.
    Beard, R., Lawton, J., Hadaegh, F.: A coordination architecture for spacecraft formation control. IEEE Trans. Control Syst. Technol. 9(6), 777–790 (2001)CrossRefGoogle Scholar
  7. 7.
    Boscariol, P., Gasparetto, A., Zanotto, V.: Model predictive control of a flexible links mechanism. J. Intell. Robot. Syst. 58(2), 125–147 (2010)CrossRefzbMATHGoogle Scholar
  8. 8.
    Chao, Z., Zhou, S.L., Ming, L., Zhang, W.G.: Uav formation flight based on nonlinear model predictive control. Math. Probl. Eng. 2012(1), 1–16 (2012)CrossRefGoogle Scholar
  9. 9.
    Chen, J., Sun, D., Yang, J., Chen, H.: Leader-follower formation control of multiple non-holonomic mobile robots incorporating a receding-horizon scheme. Int. J. Robot. Res. 29, 727–747 (2010)CrossRefGoogle Scholar
  10. 10.
    Chiddarwar, S.S., Babu, N.R.: Conflict free coordinated path planning for multiple robots using a dynamic path modification sequence. Robot. Auton. Syst. 59(78), 508–518 (2011)CrossRefGoogle Scholar
  11. 11.
    Cui, R., Ge, S.S., How, B.V.E., Choo, Y.S.: Leaderfollower formation control of underactuated autonomous underwater vehicles. Ocean Eng. 37(17–18), 1491–1502 (2010)CrossRefGoogle Scholar
  12. 12.
    Cui, R., Gao, B., Guo, J.: Pareto-optimal coordination of multiple robots with safety guarantees. Auton. Robot. 32, 189–205 (2012)CrossRefGoogle Scholar
  13. 13.
    Das, A., Fierro, R., Kumar, V., Ostrowski, J., Spletzer, J., Taylor, C.: A vision-based formation control framework. IEEE Trans. Robot. Autom. 18(5), 813–825 (2003)CrossRefGoogle Scholar
  14. 14.
    Desai, J., Ostrowski, J., Kumar, V.: Modeling and control of formations of nonholonomic mobile robots. IEEE Trans. Robot. Autom. 17(6), 905–908 (2001)CrossRefGoogle Scholar
  15. 15.
    Do, K.D., Lau, M.W.: Practical formation control of multiple unicycle-type mobile robots with limited sensing ranges. J. Intell. Robot. Syst. 64(2), 245–275 (2011)CrossRefzbMATHGoogle Scholar
  16. 16.
    Dong, W.: Robust formation control of multiple wheeled mobile robots. J. Intell. Robot. Syst. 62(3–4), 547–565 (2011)CrossRefzbMATHGoogle Scholar
  17. 17.
    Dunbar, W., Murray, R.: Distributed receding horizon control for multi-vehicle formation stabilization. Automatica 42(4), 549–558 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Franco, E., Magni, L., Parisini, T., Polycarpou, M., Raimondo, D.: Cooperative constrained control of distributed agents with nonlinear dynamics and delayed information exchange: a stabilizing receding-horizon approach. IEEE Trans. Autom. Contr. 53(1), 324–338 (2008)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Fredslund, J., Mataric, M.: A general algorithm for robot formations using local sensing and minimal communication. IEEE Trans. Robot. Autom. 18(5), 837–846 (2002) (Special issue on Adv. Multi-Robot Syst.)CrossRefGoogle Scholar
  20. 20.
    Ghommam, J., Mehrjerdi, H., Saad, M., Mnif, F.: Formation path following control of unicycle-type mobile robots. Robot. Auton. Syst. 58(5), 727–736 (2010)CrossRefGoogle Scholar
  21. 21.
    Hengster-Movrić, K., Bogdan, S., Draganjac, I.: Multi-agent formation control based on bell-shaped potential functions. J. Intell. Robot. Syst. 58(2), 165–189 (2010)CrossRefzbMATHGoogle Scholar
  22. 22.
    Khalil, H.: Nonlinear Systems, 3rd edn. Prentice Hall, Michigan State University, MI (2001)Google Scholar
  23. 23.
    Krajnik, T., Preucil, L.: A simple visual navigation system with convergence property. In: European Robotics Symposium (2008)Google Scholar
  24. 24.
    Kurabayashi, D., Ota, J., Arai, T., Ichikawa, S., Koga, S,, Asama, H., Endo, I.: Cooperative sweeping by multiple mobile robots with relocating portable obstacles. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Osaka, Japan, pp. 1472–1477 (1996)Google Scholar
  25. 25.
    Langer, D., Rosenblatt, J., Hebert, M.: A behavior-based system for off-road navigation. IEEE Trans. Robot. Autom. 10(6), 776–783 (1994)CrossRefGoogle Scholar
  26. 26.
    Lawton, J., Beard, R., Young, B.: A decentralized approach to formation maneuvers. IEEE Trans. Robot. Autom. 19(6), 933–941 (2003)CrossRefGoogle Scholar
  27. 27.
    Li, Z., Chen, W.: Adaptive neural-fuzzy control of uncertain constrained multiple coordinated nonholonomic mobile manipulators. Eng. Appl. Artif. Intell. 21(7), 985–1000 (2008)CrossRefGoogle Scholar
  28. 28.
    Li, Z., Li, J., Kang, Y.: Adaptive robust coordinated control of multiple mobile manipulators interacting with rigid environments. Automatica 46(12), 2028–2034 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Luo, C., Yang, X., Stacey, D.: Real-time path planning with deadlock avoidance of multiple cleaning robots. In: Proc. of the IEEE International Conference on Robotics and Automation, Taipei, Taiwan (2003)Google Scholar
  30. 30.
    Mayne, D.Q,, Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: stability and optimality. Automatica 36(6), 789–814 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Min, H.J., Papanikolopoulos, N.: Robot formations using a single camera and entropy-based segmentation. J. Intell. Robot. Syst. 68(1), 21–41 (2012)CrossRefzbMATHGoogle Scholar
  32. 32.
    Min, T., Yin, H.: A decentralized approach for cooperative sweeping by multiple mobile robots. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Victoria, Canada (1998)Google Scholar
  33. 33.
    Movies: Movies of experiments presented in this article (online). (2012). Accessed 20 Jan 2012
  34. 34.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer (2006)Google Scholar
  35. 35.
    Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Eng. Pract. 11(7), 733–764 (2003)CrossRefGoogle Scholar
  36. 36.
    Ren, W.: Decentralization of virtual structures in formation control of multiple vehicle systems via consensus strategies. Eur. J. Control 14, 93–103 (2008)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Ren, W., Beard, R.: Virtual structure based spacecraft formation control with formation feedback. In: Proc. of AIAA Guidance, Navigation, and Control Conference (2002)Google Scholar
  38. 38.
    Saska, M., Hess, M., Schilling, K.: Route scheduling approach for airport snow shoveling using formations of autonomous ploughs. In: Proc. of 10th International Conference on Control, Automation, Robotics and Vision (2008)Google Scholar
  39. 39.
    Saska, M., Mejia, J.S., Stipanovic, D.M., Schilling, K.: Control and navigation of formations of car-like robots on a receding horizon. In: Proc of 3rd IEEE Multi-Conference on Systems and Control (2009)Google Scholar
  40. 40.
    Saska, M., Vonasek, V., Preucil, L.: Roads sweeping by unmanned multi-vehicle formations. In: IEEE International Conference on Robotics and Automation (ICRA) (2011)Google Scholar
  41. 41.
    Shin, J., Kim, H.: Nonlinear model predictive formation flight. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 39(5), 1116–1125 (2009)CrossRefGoogle Scholar
  42. 42.
    Wagner, I., Bruckstein, A.: Cooperative cleaners: a case of distributed ant-robotics. In: Paulraj, A., Roychowdhury, V., Schaper, C.D. (eds.) Communications, Computation, Control, and Signal Processing: A Tribute to Thomas Kailath, pp. 289–308. Kluwer Academic Publishers (1997)Google Scholar
  43. 43.
    Xiao, F., Wang, L., Chen, J., Gao, Y.: Finite-time formation control for multi-agent systems. Automatica 45(11), 2605–2611 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Zhang, X., Duan, H., Yu, Y.: Receding horizon control for multi-uavs close formation control based on differential evolution. Sci. China Inf. Sci. 53, 223–235 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Martin Saska
    • 1
    Email author
  • Vojtěch Vonásek
    • 1
  • Libor Přeučil
    • 1
  1. 1.Faculty of Electrical Engineering, Department of CyberneticsCzech Technical University in PraguePrague 6Czech Republic

Personalised recommendations